
A

Dynamite: A Tool for the Verification of Alloy Models Based on PVS

MARIANO M. MOSCATO, Universidad de Buenos Aires (UBA)
CARLOS G. LOPEZ POMBO, Universidad de Buenos Aires (UBA) and CONICET
MARCELO F. FRIAS, Instituto Tecnológico de Buenos Aires (ITBA) and CONICET

Automatic analysis of Alloy models is supported by the Alloy Analyzer, a tool that translates an Alloy

model to a propositional formula that is then analyzed using off-the-shelf SAT-solvers. The translation

requires user-provided bounds on the sizes of data domains. The analysis is limited by the bounds, and is
therefore partial. Thus, the Alloy Analyzer may not be appropriate for the analysis of critical applications

where more conclusive results are necessary.
Dynamite is an extension of PVS that embeds a complete calculus for Alloy. It also includes extensions

to PVS that allow one to improve the proof effort by, for instance, automatically analyzing new hypotheses

with the aid of the Alloy Analyzer. Since PVS sequents may get cluttered with unnecessary formulas, we
use the Alloy unsat-core extraction feature in order to refine proof sequents. An internalization of Alloy’s

syntax as an Alloy specification allows us to use the Alloy Analyzer for producing witnesses for proving

existentially quantified formulas.
Dynamite complements the partial automatic analysis offered by the Alloy Analyzer with semi-automatic

verification through theorem proving. It also improves the theorem proving experience by using the Alloy

Analyzer for early error detection, sequent refinement and witness generation.

Categories and Subject Descriptors: D.2.4 [Software Engineering]: Software/Program Verification—For-
mal Methods

General Terms: Design, Verification

Additional Key Words and Phrases: Alloy, Alloy Calculus, PVS, Unsat-cores

ACM Reference Format:
Mariano M. Moscato, Carlos G. Lopez Pombo and Marcelo F. Frias, 2013. Dynamite: A Tool for the Verifica-
tion of Alloy Models Based on PVS ACM Trans. Softw. Eng. Methodol. V, N, Article A (January YYYY), 37
pages.
DOI:http://dx.doi.org/10.1145/0000000.0000000

1. INTRODUCTION
There is a vast spectrum of tools and techniques for software analysis. If we just con-
centrate on the degree of automation offered by these tools and techniques, the spec-
trum goes from fully automatic (lightweight) to fully user-driven (heavyweight). Full
automation has its price, often paid by limitations on the kind of analysis provided,

This publication was made possible by NPRP grant NPRP-4-1109-1-174 from the Qatar National Research
Fund (a member of Qatar Foundation). The statements made herein are solely the responsibility of the
authors.
Author’s addresses: M. M. Moscato, Department of Computer Science, FCEyN, Universidad de Buenos
Aires, Argentina; C. G. Lopez Pombo, Department of Computer Science, FCEyN, Universidad de Buenos
Aires and CONICET, Argentina; M. F. Frias, Department of Software Engineering, Instituto Tecnológico
de Buenos Aires (ITBA) and CONICET Argentina. E–mails: mmoscato@dc.uba.ar, clpombo@dc.uba.ar,
mfrias@itba.edu.ar.
Permission to make digital or hard copies of part or all of this work for personal or classroom use is granted
without fee provided that copies are not made or distributed for profit or commercial advantage and that
copies show this notice on the first page or initial screen of a display along with the full citation. Copyrights
for components of this work owned by others than ACM must be honored. Abstracting with credit is per-
mitted. To copy otherwise, to republish, to post on servers, to redistribute to lists, or to use any component
of this work in other works requires prior specific permission and/or a fee. Permissions may be requested
from Publications Dept., ACM, Inc., 2 Penn Plaza, Suite 701, New York, NY 10121-0701 USA, fax +1 (212)
869-0481, or permissions@acm.org.
c© YYYY ACM 1049-331X/YYYY/01-ARTA $15.00
DOI:http://dx.doi.org/10.1145/0000000.0000000

ACM Transactions on Software Engineering and Methodology, Vol. V, No. N, Article A, Pub. date: January YYYY.

A:2 Mariano M. Moscato et al.

or by the lack of scalability of the analysis. Model checking [Clarke et al. 1999] using
tools such as SPIN [Holzmann 2003] and SAT-solving using, for instance, the Alloy
Analyzer [Jackson 2012] are examples of methods that lay on this side of the spec-
trum. User guidance offers more conclusive analysis techniques, but requires trained
users. Also, user-guided techniques are often time consuming. Tools based on theorem
provers (PVS [Owre et al. 1992], Isabelle [Nipkow et al. 2002] or Coq [Bertot et al.
2004]), require a significant effort from the user.

If we confine ourselves to the analysis technique of determining if a model (specifica-
tion) is appropriate by analyzing whether certain given properties hold in the model,
then both model checking and SAT-solving can be used. In both cases, the techniques
have limitations on the expressiveness of the languages they can analyze. This is par-
ticularly clear in the case of SAT-solving, where the source language is propositional
logic. Also, most model checkers support decidable fragments of logics. If we instead
consider theorem proving, more expressive languages can be used. For instance, there
are many complete theorem provers for classical first-order logic. These include tech-
niques for automatically proving “easy” properties, but more complex ones require cre-
ative steps that must be guided by a human user. Proving a theorem can be a difficult
and tedious activity. Even more so if incorrect hypotheses are introduced along the
way. This situation, which is more common than it is desirable, is both discouraging
and time consuming. Notice that every proof step that depends on the wrong hypothe-
ses has to be reconsidered when developing a new proof.

Despite their limitations, automatic and user-driven methods also have qualities
that make them valuable. If we manage to translate our model to a propositional for-
mula (in the case of SAT-solving) or to an automaton (in the case of model checking),
the (probably weaker) model thus obtained can be automatically analyzed. Notice that
the result of the analysis of the weaker model can offer partial information about the
original model. If a complete calculus for our specification language exists, then there
is no need to translate our model to a weaker one. Proving a property using such cal-
culus allows us to conclude its validity in the model.

As an example, let us consider the Alloy modeling language [Jackson et al. 2001].
Alloy is a formal specification language that allows one to create data domains, and
express properties of relations defined over those domains. We will present Alloy in
Section 2, but we point out here that since Alloy extends classical first-order logic (it
even includes reflexive-transitive closure of binary relations, which is not expressible
in classical first-order logic), it is not decidable. The Alloy Analyzer [Jackson 2012] is a
tool that allows one to automatically analyze Alloy models by searching for counterex-
amples for a given property using off-the-shelf SAT-solvers. The impedance mismatch
between the undecidable Alloy language and the decidable language on which SAT-
solvers operate, is clear. The gap is bridged by translating Alloy models to propositional
models. The translation does not come for free. It requires users to provide bounds
(called scopes in the Alloy terminology) on the size of data domains. The bounded model
is the one translated. The result of the SAT-based analysis is then valid for those se-
mantic structures whose data domains are constrained by the chosen scopes, i.e., if a
counterexample is not found, one might still exist if larger scopes were chosen. While
this analysis technique has obvious limitations, it is nevertheless very useful when
creating a model. Although possible, it is seldom the case that errors introduced in a
model can only be exhibited within large models. The small scope hypothesis [Andoni
et al. 2002] even claims that most software errors can be made explicit by resorting to
small domain sizes. Therefore, many errors introduced when building a model can be
discovered by performing bounded analysis using small bounds.

For many modeling situations the kind of analysis offered by the Alloy Analyzer
is entirely satisfactory. In some cases, however, this analysis may fall short. This is

ACM Transactions on Software Engineering and Methodology, Vol. V, No. N, Article A, Pub. date: January YYYY.

Dynamite: A Tool for the Verification of Alloy Models Based on PVS A:3

evident when building models for critical systems. Knowing that no small errors exist
is not enough. Therefore, in this article we propose to extend the SAT-solving analysis
provided by the Alloy Analyzer with a user-guided theorem prover based on PVS.

In order to prove in PVS that a set of formulas ∆ = { δ1, . . . , δm } follows from a set
of hypotheses Γ = { γ1, . . . , γk }, one begins with the sequent Γ ` ∆. Applying inference
rules, from Γ ` ∆ one must reach other sequents that can be recognized as valid (for
example, sequents of the form α ` α). The informal understanding of the sequent Γ ` ∆
is that, from the conjunction of the formulas in Γ, the disjunction of the formulas in
∆ must follow. The formulas in Γ (∆) are called the antecedent (consequent) of the
sequent.

When an inference rule is applied on a sequent S, new sequents S1, . . . , Sn are pro-
duced. Proving sequent S then reduces to finding proofs for the intermediate sequents
S1, . . . , Sn. Our experience as users of PVS is that, when proving a given sequent,
the number of antecedents and consequents in intermediate sequents tends to grow.
This leads many times to sequents containing formulas that are unnecessary for their
proof. These formulas make the identification of new proof steps more complex. PVS
provides a command (hide) for hiding hypotheses and conclusions in sequents, yet its
incorrect use may lead to hiding necessary antecedents or consequents, making the
proof infeasible.

Alloy extends first-order logic. While dealing with propositional connectives is
straightforward, quantifiers pose a challenge. Particularly complex is the problem of
finding witnesses when attempting to prove existentially quantified assertions.

1.1. Contributions
The contributions of this article can then be summarized as follows:

— We present a complete proof calculus for the Alloy modeling language.
— We extend the PVS theorem prover so that Alloy assertions can be proved using

Alloy syntax.
— We facilitate the interaction between PVS and the Alloy Analyzer in order to

reduce the number of theorem proving errors induced by introduction of erroneous
hypotheses, introduction of false lemmas, or hiding of necessary hypotheses.

— We present a heuristic to reduce the proof search space based on the use of Un-
SAT cores to remove possibly unnecessary antecedents and consequents in a sequent.
The technique also allows us to remove formulas from the underlying theories being
considered.

— We present a novel technique based on SAT for automatic generation of witness
candidates for existentially quantified Alloy assertions.

— We present several examples, including a complex case-study coming from the
networking domain [Zave 2006], that allow us to assess the usefulness and usability
of Dynamite

1.2. Related Work
Some of the goals we envisioned when we started this article were previously ad-
dressed either by colleagues or ourselves. There are two approaches previous to ours
in what respects to theorem proving of Alloy assertions. One is the theorem prover
Prioni [Arkoudas et al. 2004]. Prioni translates Alloy specifications to first-order for-
mulas characterizing their first-order semantics, and then the first-order logic theorem
prover Athena [Arkoudas 2001] is used in order to prove the resulting theorem. While
the procedure is sound, it is not completely amenable to Alloy users. Switching from
a relational to a non relational language poses an overhead on the user that we are
trying to reduce as much as possible. The other theorem prover is the one presented in

ACM Transactions on Software Engineering and Methodology, Vol. V, No. N, Article A, Pub. date: January YYYY.

A:4 Mariano M. Moscato et al.

[Frias et al. 2004]. This theorem prover translates Alloy specifications to a close rela-
tional language based on binary relations (the calculus for omega closure fork algebras
[Frias 2002]). Since the resulting framework is an equational calculus, quantifiers are
removed from Alloy formulas in the translation process. This led to complicated equa-
tions, unnatural for standard Alloy users. In our articles [Frias et al. 2007; Moscato
et al. 2010], we announced some of the contributions made in this article. There are
differences though, namely:

— The version of Dynamite hereby described supports the whole Alloy language as
presented in [Jackson 2012].

— We present a proof of completeness of the calculus we propose, including defini-
tions that are more precise than those in [Frias et al. 2007].

— We present a different case study, explained in greater detail.
— We discuss new features incorporated to Dynamite. In particular, we consider a

new command for introduction of cases (c.f. Section 5.3), and a new command for hiding
of sequent formulas that analyzes whether the hidden formulas from a sequent were
indeed superfluous (c.f., Section 5.4).

— We present a novel technique that allows us to automatically generate witness
candidates for existentially quantified assertions.

More recent articles [El Ghazi et al. 2011; Ulbrich et al. 2012] also address the prob-
lem of verifying Alloy assertions. Article [El Ghazi et al. 2011] translates the Alloy
model to an SMT-problem, which is solved using the SMT-solver Z3 [de Moura et al.
2008]. This is a very interesting approach that has some limitations. Complex declar-
ative assertions (as the ones we deal with in this article) are unlikely to be solved
automatically. Also, the experimental results show that spurious counterexamples can
be produced. Article [Ulbrich et al. 2012] follows an approach close to ours. It presents
the Kelloy prover, which is built on top of the KeY first-order theorem prover [Beckert
et al. 2007]. Kelloy’s embedding into KeY seems to provide greater automation, but no
integration with the Alloy Analyzer. In particular, a limitation mentioned in the arti-
cle is the need for quantifier instantiation. For some of the examples used in [Ulbrich
et al. 2012], the witness generation technique we introduce here was able to produce
correct instantiations, automatically. Another difference arises in the way integers are
modeled. While [El Ghazi et al. 2011; Ulbrich et al. 2012] depart from the Alloy seman-
tics by considering the standard mathematical model of the integers, we stick to the
Alloy model where a 2’s-complement representation of integers is considered (c.f. Sec-
tion 3.4). Nitpick [Blanchette et al. 2010] is used as a counterexample generator for the
higher-order logic supported by the Isabelle theorem prover. Nitpick, like Dynamite,
aims at detecting non-theorems when a proof is initiated. Unlike Dynamite, Nitpick’s
application seems to be restricted to this case.

1.3. Organization
The article is organized as follows. In Section 2 we present a brief introduction to the
Alloy modelling language and the Alloy Analyzer. In Section 3 we present the complete
calculus for Alloy that will be made accessible through our tool, Dynamite. In Section 4
we describe the way in which the complete calculus presented in Section 3 is embedded
in PVS, as well as discuss important implementation details. In Section 5 we describe
the features of Dynamite through several case studies. Finally, in Section 6 we present
some conclusions and discuss further improvements to the tool.

2. AN INTRODUCTION TO ALLOY
In this section we describe the Alloy modeling language and the Alloy Analyzer with
the level of detail required in order to follow this article. For a thorough description

ACM Transactions on Software Engineering and Methodology, Vol. V, No. N, Article A, Pub. date: January YYYY.

Dynamite: A Tool for the Verification of Alloy Models Based on PVS A:5

module file_system

abstract sig Object {}

sig Name {}

sig File extends Object {}

sig Dir extends Object {
contents: Name -> lone Object,
parent: lone Dir }

one sig Root extends Dir {}

pred parentIsWellDefined[d: Dir] { d.parent = (contents.d).Name }

fact ParentDefinition { all d: Dir | parentIsWellDefined[d] }
fact RootHasNoParent { all r: Root | no r.parent }

fun ancestors[d: Dir]: Dir { d.^parent }

fact NoOwnAncestor { all d: Dir | d !in ancestors[d] }
fact RootIsTheRoot { all d: Dir - Root | Root in ancestors[d] }
fact OneParent { all d: Dir | d !in Root =>

(one d.parent && one contents.d) }

assert NoDirAliases { all o: Dir | lone (contents.o) }
check NoDirAliases for 4

Fig. 1. An Alloy sample model.

we point the reader to the book [Jackson 2012], which provides numerous examples
of varied complexity illustrating Alloy’s features. In Fig. 1 we present a sample Alloy
model. The model describes a simple file system, where files are stored in directories
accessible from a root directory. Models are organized in modules. Signatures (identi-
fied with the keyword sig) denote data domains. The gap between the syntactic domain
and the semantic domain is bridged using environments. Much the same as valuations
from classical first-order logic map variables to semantic values, environments map
atomic syntactic constraints to adequately typed semantic objects. A signature can be
abstract (as is the case of signature Object), in which case it will only hold elements
from inheriting signatures. (Single) inheritance is distinguished in Alloy with the key-
word extends. For example, signature Dir extends Object. Signatures may contain at-
tributes, which are called fields in Alloy. Field contents denotes a ternary relation
contained in Dir×Name×Object. The modifier lone in the declaration of field contents
actually relates Dir objects with partial functions from Name to Object. Similarly, field
parent denotes a binary relation contained in Dir× Dir. The modifier lone constrains
this relation to be a partial function. A one sig can have exactly one element in the
denoted set (see for instance signature Root). Once domains are defined, constraints
can be added. Axioms are called facts in Alloy terminology. In order to simplify writ-
ing facts, functions (noted fun) and predicates (noted pred) can be introduced. Terms
denote relations, and are built from signatures, signature fields and constants such as
univ (set of all objects in the model), iden (identity binary relation on the set univ),
and none (the empty set). Relational operators are used to build more complex terms.
Difference, union, intersection and composition of relations are denoted by −, +, & and
·, respectively. The transpose of a binary relation (denoted by ∼) flips the elements in
pairs, around. Transitive closure and reflexive-transitive closure of binary relations
are denoted by ̂ and ∗, respectively. Formulas are built from equalities and inclu-

ACM Transactions on Software Engineering and Methodology, Vol. V, No. N, Article A, Pub. date: January YYYY.

A:6 Mariano M. Moscato et al.

sions between terms using the standard connectives and quantifiers from first-order
predicate logic. Figure 2 presents the formal syntax and semantics of Alloy terms and
formulas supported inside Dynamite. Abbreviations are used to simplify formulas. For
example, keyword no in fact RootHasNoParent constrains term r.parent to denote an
empty relation. Similarly, keyword one in fact OneParent implies that the term denotes
a singleton relation. A keyword lone constrains a term to denote a set whose cardinal-
ity is at most 1.

Assertions are sentences that are expected to hold in the model as a means to vali-
date the model correctness. The Alloy Analyzer appropriately translates the model and
the (negation of the) assertion to a propositional formula, and an off-the-shelf SAT-
solver is used in order to look for a satisfying valuation. If such valuation is found, a
counterexample for the assertion can be retrieved from it. Check commands tell the
Analyzer about the sizes of domains (scopes) to be used during analysis. For instance,
the “check” command in Fig. 1 states that up to 4 objects in each domain can be used
during analysis.

3. A COMPLETE CALCULUS FOR ALLOY
In this section we present a deductive calculus useful for the verification of Alloy as-
sertions. The procedure we will use for presenting the calculus is the following:

— We will introduce the class of “proper point-dense omega closure fork algebras”.
These algebras contain operations akin to Alloy operations. We will also present a
complete calculus for this class of algebras. The deduction relation in this formalism
will be denoted by `.

— We will present an interpretability theorem from Alloy theories to fork algebra
theories. An interpretability theorem consists of a mapping F : AlloyForm → ForkForm
(mapping Alloy formulas to fork formulas), and a theorem proving that:

Γ |=Alloy α ⇐⇒ {F (γ) : γ ∈ Γ } ` F (α) .

— We show how Alloy integers and cardinality are modeled in the proposed formal-
ism, and discuss the consequences of adopting such model.

Notice that checking the validity of an Alloy assertion in a specification then reduces to
the problem of proving a property in the deductive calculus of fork algebras. Since the
fork algebraic formalism is not exactly Alloy, it is essential to discuss to what extent is
the new formalism useful for Alloy users. This discussion permeates Sections 3.1–3.3.

In Section 3.1 we present the fork formalism. In Section 3.2 we discuss how Al-
loy quantification is modeled in a formalism where quantifiers range over relations.
In Section 3.3, we present the interpretability result. Notice that a particular theory
that has to be interpreted in the algebraic formalism is the Alloy theory for integers
(c.f. Section 3.4).

3.1. Point-Dense Omega Closure Fork Algebras
We begin this section by introducing the class of proper point-dense omega closure
fork algebras. Qualifier “proper” refers to the fact these algebras are special in the
sense that they are particularly close to the semantics of Alloy. In effect, these algebras
have (binary) relations (on a given set B) in their universe, and operations for union,
intersection, difference1, navigation, transposition and closure of relations, as Alloy
has.

1Actually, these algebras have a complement operation, but the latter allows us to define difference with the
aid of intersection.

ACM Transactions on Software Engineering and Methodology, Vol. V, No. N, Article A, Pub. date: January YYYY.

Dynamite: A Tool for the Verification of Alloy Models Based on PVS A:7

form ::=
| expr in expr (subset)
| intExpr [< | > | =] intExpr (comparison)
| !form (neg)
| form && form (conj)
| form || form (disj)
| all v : type || form (universal)
| some v : type || form (exist)

intExpr ::=
| 0, 1,−1, 2,−2, . . . (int constants)
| intExpr fun/add intExpr (addition)
| intExpr fun/sub intExpr (subtraction)
| intExpr fun/mul intExpr (multiplication)
| intExpr fun/div intExpr (integer division)
| intExpr fun/rem intExpr (remainder)
| #expr (cardinality)
| int [expr] (int value of expr)
| sum v : type || intExpr (summation)

expr ::=
| V ar
| Int (integers sig)
| iden (identity relation)
| univ (universe set)
| none (empty set)
| expr + expr (union)
| expr & expr (intersection)
| expr− expr (difference)
| ∼ expr (transpose)
| expr.expr (navigation)
| expr −> expr (cartesian product)
| expr ++ expr (relational override)
| ˆexpr (transitive closure)
| ∗expr (reflexive-transitive closure)
| let Var = expr || expr (let-expression)
| {V ar : type, · · · , V ar : type || form}
| Int [intExpr] (integer relation)

M : form→ env → boolean
M [a in b]e = X[a]e ⊆ X[b]e
M [!F]e = ¬M [F]e
M [a [< | > | =] b]e = X[a]e [< | > | =] X[b]e
M [F&&G]e = M [F]e ∧M [G]e
M [F || G]e = M [F]e ∨M [G]e
M [all v : t || F] =∧
{M [F](e⊕ v7→{x })/x ∈ e(t)}

M [some v : t || F] =∨
{M [F](e⊕ v7→{x })/x ∈ e(t)}

X : expr→ env → value
X[0]e = 0, X[1]e = 1, . . .
X[i fun/add j]e = X[i]e+X[j]e
X[i fun/sub j]e = X[i]e−X[j]e
X[i fun/mul j]e = X[i]e×X[j]e
X[i fun/div j]e = X[i]e/X[j]e
X[i fun/rem j]e = X[i]e%X[j]e
X[#expr]e = sizeOf (X[expr]e)
X[int [a]]e =

∑
x∈X[a]e∧x∈X[Int]e x

X[sum v : t || i]e =∑
x∈e(t)X[i](e⊕ v7→{x })

X[v]e = e(v)
X[Int]e = Alloy ints
X[iden]e = { 〈a, a〉 : a is an atom }
X[univ]e = { a : a is an atom }
X[none]e = ∅
X[a+ b]e = X[a]e ∪X[b]e
X[a & b]e = X[a]e ∩X[b]e
X[a− b]e = X[a]e \X[b]e
X[∼ a]e = { 〈x, y〉 : 〈y, x〉 ∈ X[a]e }
X[a.b]e = X[a]e.X[b]e
X[a −> b]e = X[a]e×X[b]e
X[a++ b]e = X[a]e�X[b]e
X[∗a]e = smallest r s. t. iden ⊆ r,
r .r ⊆ r and X[a]e ⊆ r

X[ˆa]e = X[a]e.X[∗a]e
X[let v = a || b]e =
X[b](e⊕ v 7→ {X[a]e })

X[{x1 : t1, . . . , xn : tn || F}]e =
{〈a1, . . . , an〉 :
M [F](e⊕ (xi 7→{ ai })ni=1) ∧
a1 ∈ e(t1) ∧ · · · ∧ an ∈ e(tn)}

X[Int [i]]e = {X[i]e }

r � s = (r − { 〈a1, . . . , an〉 : ai is an atom ∧ a1 ∈ dom(s) }) ∪ s. Relations r and s have arity n.

Fig. 2. Alloy’s syntax and semantics.

ACM Transactions on Software Engineering and Methodology, Vol. V, No. N, Article A, Pub. date: January YYYY.

A:8 Mariano M. Moscato et al.

Definition 3.1. A proper point-dense omega closure fork algebra on a set B is a
structure 〈R,+,&,–, ∅, univ , ., iden,∼, ∗,∇ 〉,
where:

— R is a set of binary relations on the set B, closed under the operations.
— – is set-complement, + is set-union and & is set-intersection.
— ∅ is the empty set, and univ is the binary relation B ×B.
— . is composition (called navigation in Alloy terminology) between binary relations.
— iden is the identity relation on B.
— ∼ is transposition of binary relations.
— ∗ is reflexive-transitive closure of binary relations (and ̂ is transitive closure).
— ∇ is the fork operation. It is defined as

S∇T = { 〈a, b ? c〉 : 〈a, b〉 ∈ S ∧ 〈a, c〉 ∈ T } . (1)

Symbol ? in (1) stands for an injective function of type B × B → B. Therefore, we
assume set B to be closed under ?.

Notice that while function ? has to be injective, it may not be surjective. Therefore,
there may exist elements in B that do not encode pairs. These elements are called
urelements.

We also constrain these algebras to be “point-dense” [Maddux 1991]. A point is a
relation of the form { 〈a, a〉 }. Point-density requires set R to have plenty of these rela-
tions. More formally speaking, for each nonempty relation I contained in the identity
relation, there must be a point p ∈ R satisfying p ⊆ I.

There are essentially two ways in which the previous definition departs from Alloy,
namely, the existence of the fork operator (not directly tied to any Alloy operator), and
the request for point-density. As we will see in Section 3.3, these are essential in order
to provide the complete calculus; fork will be necessary in order to emulate relations
of arity greater than two in a calculus that only handles binary relations, and point-
density is required in order to define Alloy’s quantifiers.

We now introduce a larger class of algebras as the class of models of a finitely ax-
iomatized theory. These algebras, called point-dense omega closure fork algebras (we
will denote the class by PDOCFA) are closely related (as will be shown in Thm. 3.3) to
their “proper” counterpart. In order to present the theory we will present the axioms
and the proof rules. Before doing so, we introduce some notation.

NOTATION 1. In a proper PDOCFA the relations π and ρ defined by

π = ∼ (iden∇univ) and ρ = ∼ (univ∇iden)

behave as projections with respect to the encoding of pairs induced by the injective func-
tion ?. Their semantics in a proper PDOCFA A whose binary relations range over a set
B, is

π = { 〈a ? b, a〉 : a, b ∈ B } and ρ = { 〈a ? b, b〉 : a, b ∈ B } .
The binary operation cross (denoted by ⊗) performs a parallel product. Its set-

theoretical definition is given by

r⊗s = { 〈a ? c, b ? d〉 : 〈a, b〉 ∈ r and 〈c, d〉 ∈ s } .
In algebraic terms, operation cross is definable with the aid of fork via the equation

r⊗s = (π.r)∇ (ρ.s) .

We can characterize points as nonempty binary relations that satisfy the property
x.univ .x ⊆ iden. If we denote the inclusion relation by “in” (as in Alloy), the predicate

ACM Transactions on Software Engineering and Methodology, Vol. V, No. N, Article A, Pub. date: January YYYY.

Dynamite: A Tool for the Verification of Alloy Models Based on PVS A:9

“Point” defined by

Point(p) ⇐⇒ p != ∅ && p.univ .p in iden

characterizes those relations that are points.

The axioms and inference rules for the calculus are given in the following definition.

Definition 3.2. The calculus for point-dense omega closure fork algebras is charac-
terized by the following axioms and proof rules:

(1) Axioms for Boolean algebras characterizing the meaning of +, &, –, ∅ and univ .
(2) Formulas defining composition of binary relations, transposition, reflexive–

transitive closure and the identity relation:

x. (y .z) = (x.y) .z,
x.iden = iden .x = x,
(x.y) &z = ∅ iff (z . ∼ y) &x = ∅ iff (∼ x.z) &y = ∅,
∗x = iden + (x. ∗ x) ,
∗x.y .univ in (y .univ) +

(
∗x.(y .univ & (x.y .univ))

)
.

(3) Formulas defining the operator ∇:

x∇y = (x. ∼ π) & (y . ∼ ρ) ,
(x∇y) . ∼ (w∇z) = (x. ∼ w) & (y . ∼ z) ,
π∇ρ in iden.

(4) A formula enforcing point-density:

all x | (x != ∅ && x in iden)⇒ (some p | Point(p) && p in x) ,

(5) Term univ . (univ∇univ) & iden (to be abbreviated as idenU) defines a partial
identity on the set of urelements. Then, the following formula forces the existence of a
nonempty set of urelements:

univ .idenU .univ = univ .

The inference rules for the closure fork calculus are those for classical first-order
logic (choose your favorite ones), plus the following equational (but infinitary) proof
rule for reflexive-transitive closure (given i > 0, by xi we denote the relation induc-
tively defined as follows: x1 = x, and xi+1 = x.xi):

` iden in y xi in y ` xi+1 in y (ω−Rule)

` ∗x in y

The axioms and rules given above define a class of models. Proper PDOCFA belong
to this class, but there might be models for the axioms that are not proper PDOCFA.
Fortunately, the following theorem (which follows from [Frias et al. 1997], [Frias 2002,
Thm. 4.2] and [Maddux 1991, Thm. 52]), states that if a model is not a proper PDOCFA,
then it is isomorphic to one.

THEOREM 3.3. Every PDOCFA A is isomorphic to a proper PDOCFA B. Moreover,
there exist relations { 〈a0, a0〉 } , . . . , { 〈ai, ai〉 } . . . (possibly infinitely many of them) that
belong to B, such that iden = { 〈a0, a0〉 , . . . , 〈ai, ai〉 , . . . }.

Notice that the previously presented calculus and classes of algebras share most of
the operations with Alloy (at least intentionally and notationally). While Thm. 3.3 is
important in itself (it implies that the calculus is complete with respect to the proper-
ties valid in proper PDOCFAs), it is necessary in order to prove theorems on the appro-
priateness of the deductive mechanism we will provide for Alloy in Section 3.3. There

ACM Transactions on Software Engineering and Methodology, Vol. V, No. N, Article A, Pub. date: January YYYY.

A:10 Mariano M. Moscato et al.

is a gap between the language of PDOCFA and Alloy that still needs to be bridged,
namely, the way quantification is defined. While quantification in Alloy ranges over
atomic elements from signatures, in PDOCFA, quantifiers range over all the relations
in the domain. In Section 3.2 we will introduce appropriate notation in the language
of PDOCFA in order to bridge the gap. For a thorough discussion about fork algebras
and their applications, the reader is directed to [Frias 2002].

3.2. Constraining PDOCFA Quantifiers to Points
When we write an Alloy formula such as

all d, d′ : Domain | d.space != d′.space => d != d′,

quantified variables d and d′ range over Domain objects. There is a single signature in
PDOCFA, namely, the one that holds all the relations. Therefore, given an algebra in
PDOCFA, quantifiers range over all the relations in the domain of the algebra. There-
fore, while the Alloy operations have an almost direct counterpart in PDOCFA, quanti-
fied formulas do not. This is when points and point-density (as presented in Def. 3.2)
become necessary. Recall that a point is a relation that in proper PDOCFAs has the form
{ 〈a, a〉 }. We then associate an Alloy singleton { a } with the point { 〈a, a〉 }. Moreover,
we will associate Alloy signatures with partial identities in PDOCFA. While we will
present the details of the translation in Section 3.3 (c.f. Def. 3.8), an Alloy signature A
will be represented by a partial identity idenA satisfying idenA = { 〈a, a〉 : a ∈ A }. We
can then map an Alloy formula of the form

all a : A | Form

to a PDOCFA formula of the form

all a | (Point(a) && a in iden_A) => Form’

where Form’ is the translation of formula Form.
Similarly, an existentially quantified Alloy formula

some a : A | Form

will be mapped to the formula

some a | Point(a) && a in iden_A && Form’

In order to retain the similarity between Alloy formulas and their counterparts, we
will introduce the following notation:

all a | (Point(a) && a in iden_A) => Form’

will be abbreviated to

all a : A | Form’

and similarly, formula

some a | Point(a) && a in iden_A && Form’

will be abbreviated to

some a : A | Form’

Notice that the above abbreviations equate (up-to translation of terms) the source
Alloy formulas and their translation to PDOCFA.

ACM Transactions on Software Engineering and Methodology, Vol. V, No. N, Article A, Pub. date: January YYYY.

Dynamite: A Tool for the Verification of Alloy Models Based on PVS A:11

3.3. Interpretability of Alloy in PDOCFA

One of the (main) goals of this article is to present a complete deductive mechanism
for Alloy. In order to fulfill this task we will prove an interpretation theorem of Al-
loy theories as PDOCFA theories. An interpretation theorem of Alloy in PDOCFA (as
described in the introduction to Section 3), allows us to map semantic entailment in
Alloy to deductions in PDOCFA. Such result allows us to use the calculus for PDOCFA
in the following way. If we want to prove a given assertion α in an Alloy model (spec-
ification) M , we translate α and M to PDOCFA formulas α′ and M ′, and prove that α′
follows from M ′ according to the PDOCFA calculus. As we discussed in Section 1, the
idea of mapping Alloy to an expressive-enough formalism in which to carry proofs on
is not entirely new. It has already been done for instance with Prioni [Arkoudas et al.
2004]. The (essential) advantage of the mapping we propose in this article is that the
resulting formalism is extremely close to Alloy, and therefore easier to grasp by stan-
dard Alloy users. While this feature may be useless in the context of fully automated
tools (for which the language target of the translation may be ignored by the user), it
is of utter importance for user-guided tools. In the remaining parts of this section we
give a proof of the interpretability theorem.

The main part of an interpretability theorem is a mapping from Alloy formulas to
formulas in the language of PDOCFA. The mapping is defined in two stages, since Alloy
terms must be mapped as well. We will present maps T (mapping terms), and F (map-
ping formulas). Mapping F ’s definition uses T . Mapping T must, in particular, trans-
late relational constants coming from Alloy signatures. Since these are interpreted in
Alloy as n-ary relations, and PDOCFA only deals with binary relations, we must find an
adequate means for modeling relations of arity greater than 2 as binary relations. The
operator fork allows us to do this in a simple way. An invariant behind the translation
is that given an Alloy unary relation, it is translated to a binary partial identity (i.e.,
a binary relation contained in the identity relation). For relations of arity greater than
(or equal to) 2 holding tuples of the form 〈a1, a2, . . . , an〉, the binary relation resulting
from the translation will hold tuples of the form2 〈a1, a2 ? · · · ? an〉. Although the result-
ing relation is binary, we will say its rank is n if it encodes an Alloy relation of rank n.
Notice that navigation in PDOCFA must be modified in order to behave as expected for
Alloy. We define in PDOCFA a new operation denoted by • that preserves the previously
given invariant.

Definition 3.4. Given a binary relation R, by Dom (R) we denote the partial iden-
tity over the elements in R’s domain. Similarly, by Ran (R) we denote the partial iden-
tity over the elements in R’s range. Since we are encoding n-ary Alloy relations as
binary ones, by rank(R) (R being the binary relation) we denote the arity of the origi-
nal Alloy relation. In algebraic terms, we have

Dom (R) = (R . ∼ R) &iden, and Ran (R) = (∼ R . R) &iden .

R • S =

Ran (R.S) if rank(R) = 1 ∧ rank(S) = 2
∼ π.Ran (R.S) .ρ if rank(R) = 1 ∧ rank(S) > 2
Dom (R.S) if rank(R) = 2 ∧ rank(S) = 1
R.S if rank(R) = 2 ∧ rank(S) > 1
R. (iden⊗ (iden⊗ (· · · ⊗ ((iden⊗S) .π)))) if rank(R) > 2 ∧ rank(S) = 1
R. (iden⊗ (iden⊗ (· · · ⊗ (iden⊗S)))) if rank(R) > 2 ∧ rank(S) > 1

(2)

Let us illustrate Eq. (2) with an example. Relation contents (from signature Dir
introduced in Fig. 1), is ternary. We will assume that for each relational constant in

2Since ? is not associative, an expression of the form a ? b ? c denotes the object a ? (b ? c).

ACM Transactions on Software Engineering and Methodology, Vol. V, No. N, Article A, Pub. date: January YYYY.

A:12 Mariano M. Moscato et al.

an Alloy model (be it a signature or a signature field), there is a corresponding bi-
nary constant added to the language of PDOCFA. We will use the following notational
convention.

NOTATION 2. If an Alloy signature is called S, the PDOCFA constant we add is
named idenS . Similarly, given an Alloy field named X, the PDOCFA counterpart will be
denoted by X.

Then, relation contents satisfies

contents = { 〈a, b ? c〉 : 〈a, b, c〉 ∈ contents } .
If ob is an object atom (i.e., a unary Alloy relation of the form { ob } for some ob from
signature Object), the navigation contents.ob produces as a result a binary relation
contained in Dir×Name. Let us analyze what is the result of applying • on the PDOCFA
representation of contents and ob. We obtain:

contents • ob
= (by Def. of •)

contents .(iden⊗ob) .π
= (by Def. of “.”)

{〈d, a〉 : some x : Name, y : Object | 〈d, x ? y〉 in contents ∧
some x′ : Name, y′ : Object | 〈x ? y, x′ ? y′〉 in iden⊗ob ∧
〈x′ ? y′, a〉 ∈ π}

= (because 〈x, x′〉 ∈ iden ∧ 〈y, y′〉 ∈ ob ⊆ iden)
{〈d, a〉 : some x : Name, y : Object | 〈d, x ? y〉 in contents ∧
〈y, y〉 ∈ ob ∧ 〈x ? y, a〉 ∈ π}

= (by Def. of π, is x = a)
{〈d, a〉 : some y : Object | 〈d, a ? y〉 in contents ∧ 〈y, y〉 ∈ ob}

= (due to the relationship between contents and contents, and ob and ob)
{〈d, a〉 : some y : Object | 〈d, a, y〉 in contents && y ∈ ob}

= (because ob is an atom from Object)
{〈d, a〉 : 〈d, a, ob〉 in contents}

It is worth emphasizing that, while Alloy formulas and PDOCFA formulas are close,
still there are differences between the formalisms. In Def. 3.5 we will present the trans-
lation for Alloy terms. As it was discussed in Section 3.1, operator ∇ will be necessary
in order to emulate relations of arity greater than two in a calculus that only handles
binary relations. We introduced in Eq. (2) an operator • (that uses ∇ in its definition)
that interprets composition between Alloy relations whose arity may be different from
2. The differences from the Alloy language show when we need to prove properties of
• that require using the underlying fork algebra definition that includes the operator
∇ . We expect the number of properties involving the definition of • to be small com-
pared to the complete proof. In the case study we are reporting, 25 out of 60 proved
lemmas required dealing with the low-level representation of •. Yet 18 out of these 25
properties relate to properties of • that may be reused along other proofs. For example,
among these 18 properties the following general properties are included:

all A:set univ, B:set univ, R:set(A->B), S:set(A->B), a:A |
R in S implies a.R in a.S

all A:set univ, B:set univ, R:set(A->B), S:set(A->B) |
(R.B)+(S.B) = (R+S).B

all A:set univ, B:set univ, C:set univ, W:set(A->(B->C)), a:A |
a.W in B->C

We include a library with those properties of • that we consider general and useful.

ACM Transactions on Software Engineering and Methodology, Vol. V, No. N, Article A, Pub. date: January YYYY.

Dynamite: A Tool for the Verification of Alloy Models Based on PVS A:13

The following definition introduces the mapping for terms. Notice that while Dyna-
mite supports the whole language described in Fig. 2, we here focus on an expressive
core subset of the language.

Definition 3.5. Function T maps Alloy terms to expressions in the language of
PDOCFA (xi is a variable ranging over Alloy objects, and Xi is a variable ranging over
points).

T (xi) = Xi, T (iden) = idenU,
T (univ) = idenU, T (none) = ∅,
T (sig i) = idensigi

, T (C) = C, (C is an Alloy field)
T (∼ r) = ∼ T (r), T (∗r) = ∗T (r),
T (r+s) = T (r) + T (s), T (r&s) = T (r) & T (s),

T (r − s) = T (r) & T (s), T (r.s) = T (r) • T (s).

Formal semantics of Alloy is defined in terms of an environment. An environment
is a function that assigns sets to signatures, adequately typed relations to relational
constants (those arising from signature fields), and values to variables over individ-
uals. The translation process requires adding new constant relations to PDOCFA cor-
responding to the relational constants in the Alloy model. We have already explained
how signatures and fields are modeled in the algebraic setting. Regarding individual
Alloy variables, our convention is that these are modeled using relational variables
ranging over points. From an Alloy environment we can build a PDOCFA environment
assigning meaning to these new constants. The construction is done as follows.

Definition 3.6. Given an Alloy environment e we define a PDOCFA environment eP
(P stands for PDOCFA), as follows:

— If S is a signature, we define
eP(idenS) = { 〈s, s〉 : s ∈ e(S) } ,

— If F is an n-ary field (n ≥ 2), then
eP(F) = { 〈a1, a2 ? · · · ? an〉 : 〈a1, a2, . . . , an〉 ∈ e(F) } ,

— If v is a variable (ranging over Alloy atoms), then (recall that the corresponding
relational variable ranging over points is noted V)

eP(V) = { 〈e(v), e(v)〉 }
. Notice that the resulting relation is indeed a point.

Similarly, given a proper PDOCFA and a relational environment we can define a sort
of canonical Alloy environment.

Definition 3.7. Let F be a proper PDOCFA and let e be a relational environment
assigning meaning to constans in F. We define an Alloy environment eA (A stands for
Alloy) as follows:

— eA(sigi) =
{
a : 〈a, a〉 ∈ e(idensigi

)
}

,
— eA(R) = { 〈a1, . . . , an〉 : 〈a1, a2 ? · · · ? an〉 ∈ e(R) },
— eA(vi) = a such that e(Vi) = { 〈a, a〉 }.

Once the translation of terms has been presented, we introduce the translation from
Alloy formulas to PDOCFA formulas. The translation differs from the one presented in
[Frias et al. 2004] in that the target of the translation is a first-order language rather
than an equational language, and therefore it is no longer necessary to encode quanti-
fied variables because they are kept explicit. This will greatly improve the readability
of the translated formulas by Alloy users.

ACM Transactions on Software Engineering and Methodology, Vol. V, No. N, Article A, Pub. date: January YYYY.

A:14 Mariano M. Moscato et al.

Definition 3.8. Function F , defined below, maps Alloy formulas to PDOCFA formu-
las.

F (t1 in t2) = T (t1) in T (t2), F (!α) = !F (α),
F (α && β) = F (α) && F (β), F (α || β) = F (α) || F (β),
F (some x : S | α) = some x : S | F (α), F (all x : S | α) = all x : S | F (α) .

Recall that quantifications in the right-hand side are abbreviations for formulas where
quantifiers range over points of the appropriate signature. Notice that the resulting
formulas are (apart from the translation of terms) undistinguishable from Alloy for-
mulas.

We then prove the following completeness theorem (recall that the turnstile symbol
` notes the derivability relation in the calculus of PDOCFAs).

THEOREM 3.9. Let Σ ∪ {ϕ } be a set of Alloy formulas. Then,

Σ |= ϕ ⇐⇒ {F (σ) : σ ∈ Σ } ` F (ϕ) .

PROOF. =⇒) If {F (σ) : σ ∈ Σ } 0 F (ϕ), then there exists a PDOCFA F such that
F |= {F (σ) : σ ∈ Σ } and F 6|= F (ϕ). From Thm. 3.3 there exists a proper PDOCFA F′

isomorphic to F. Clearly, F′ |= {F (σ) : σ ∈ Σ } and F′ 6|= F (ϕ). Then, there is a relational
environment e such that F′ |= {F (σ) : σ ∈ Σ } [e] and F′ 6|= F (ϕ)[e]. From Lemma A.6,
there exists an Alloy environment eA such that |= Σ[eA] and 6|= ϕ[eA]. Thus, Σ 6|= ϕ.
⇐=) If Σ 6|= ϕ, then there exists an Alloy environment e such that |= Σ[e] and 6|= ϕ[e].
From Lemma A.7 there exists a proper PDOCFA F compatible with e. From Lemma
A.5, F |= {F (σ) : σ ∈ Σ } [eP] and F 6|= F (ϕ)[eP]. Then, {F (σ) : σ ∈ Σ } 0 F (ϕ).

3.4. Alloy Integers in PDOCFA

Alloy integers are defined relative to a user-provided bound [Jackson 2012]. This
bound, called the bit width, is the number of binary digits used to represent inte-
ger atoms using 2’s complement arithmetic. For instance, with 5 as bit width, we can
represent integers -16 through 15. Arithmetic operators are also defined using 2’s com-
plement arithmetic. For example, 15 + 1 = −16 holds when bit width 5 is chosen. We
will call +bw to the arithmetic sum relative to a bit width bw. Numeric atoms may
appear in relations like regular atoms do. In fact, they both have the same status.

To support Alloy integers in Dynamite, we enrich PDOCFA theories with new
constants, functions, predicates, and their corresponding axioms. We add a new
partial identity idenZ, which models the set of Alloy integer atoms in the range[
−2bw−1, 2bw−1 − 1

]
determined by the bit width. In our theory, idenZ is a set of urele-

ments, and 0 and bw are constants that denote the integer value 0 and the bit width,
respectively. Notice that while 0 is always contained in idenZ, bw may not be when
bw ∈ {1, 2}. Therefore, we will focus on the general case (bw > 2), and come back to
the cases in which bw ∈ {1, 2} after the presentation of the general case. Axiomatically,

idenZ in idenU, Point(0), Point(bw), 0 in idenZ, bw in idenZ .

We introduce a binary predicate symbol < which stands for a linear order with end-
points, over idenZ. In order to simplify the notation, quantifications over Z are indeed
quantifications over points contained in idenZ. We will note by Max (x) the integer
unary predicate !some a : Z | x < a. A predicate Min(x) is symmetrically defined.
Binary predicate < is characterized by the axioms

all a, b : Z | a < b || b < a, all a : Z |!a < a,

all a, b, c : Z | (a < b && b < c)⇒ a < c,

ACM Transactions on Software Engineering and Methodology, Vol. V, No. N, Article A, Pub. date: January YYYY.

Dynamite: A Tool for the Verification of Alloy Models Based on PVS A:15

some a : Z | Min(a), some a : Z | Max (a).

We introduce next the unary function succ, which models the successor function
(+1) according to 2’s complement arithmetic:

all a, b : Z | (Max (b) && a < b)⇒ a < succ(a),

all a : Z |!some b : Z | a < b && b < succ(a),

all a, b : Z | (Max (a) && Min(b))⇒ succ(a) = b.

Having defined successor, defining predecessor, unary minus, addition, subtraction,
multiplication, division and power becomes an easy exercise. We present the definition
of addition (noted +bw), as an example:

all a : Z | a+bw 0 = a, all a, b : Z | a+bw succ(b) = succ (a+bw b) .

Once the operations have been defined, we can axiomatize the proper value of the
endpoints, as well as remark that bw must be greater than 2:

Min
(
−2bw−1

)
, Max

(
2bw−1 − 1

)
, bw > succ(succ(0)) .

Supporting the Alloy cardinality operator # requires the addition of a new function
card to PDOCFA. As expected, points have cardinality 1. The cardinality of an arbi-
trary relation is defined by formulas that, for finite relations, make card return the
number of tuples3:

all r | Point(r) ⇒ card(r) = succ(0),

card(∅) = 0, all r | Some(r)⇒ card(r) = succ(0) +bw card(r\ε(r)) .
Since numeric constants in a specification cannot take values off the range deter-

mined by bw, for each constant symbol c of type Z we add axioms:

−2bw−1 ≤ c, c ≤ 2bw−1 − 1 .

Given an Alloy integer expression e, the Alloy expression Int[e] denotes the integer
atom holding the integer value of e. Conversely, the Alloy function int returns the sum
of the integer values corresponding to the integer atoms included in a given Alloy ex-
pression. For example, Int[2] denotes the numeric atom corresponding to the integer
2, which in turn is the result of int[Int[2]].

In PDOCFA we make no distinction between integer values and integer atoms. We
will use points contained in idenZ to represent both kinds on entities. We model func-
tion Int in PDOCFA with a unary function Int, which is defined as the identity. We also
introduce a unary function int which models int. Axioms

all a : Z | int(a) = a, all a : univ − Z | int(a) = 0, int(∅) = 0

state that int behaves as the identity on integer atoms, and returns 0 for non integer
atoms or the empty relation. For more complex relational expressions, int must add
the values of the integer points contained in the expression. This is captured by the
following axiom:

all r | int(r) = int(ε(r)) +bw int(r\ε(r)).
The theories that model Alloy integers in PDOCFA when bw ∈ {1, 2}, are obtained by

adequately instantiating the above theory (while at the same time removing axioms

3Unary predicate Some characterizes nonempty relations. ε(A) retrieves a pair contained in A, and \ stands
for set difference.

ACM Transactions on Software Engineering and Methodology, Vol. V, No. N, Article A, Pub. date: January YYYY.

A:16 Mariano M. Moscato et al.

bw in idenZ and bw > succ(succ(0))). For instance, for bw = 1, the axiomatization of
the end points becomes Min (succ(0)) and Max (0). Notice that, in this case, succ(0) is
indeed −1.

For PDOCFA models in which the set of integer points is finite, the theory correctly
captures Alloy’s semantics. Notice that since the theory admits arbitrarily large finite
models, by compactness it must admit infinite models as well. We leave the study of
such models as further work.

Unlike [Ulbrich et al. 2012], which departs from Alloy’s semantics and considers the
standard infinite model for integers, we consider 2’s complement arithmetic on integers
representable using a finite bit width. For Dynamite this is not an optional feature of
the language, but rather the only possible choice. In Section 5 we will present the main
features of Dynamite. One such feature is the use of the Alloy Analyzer to look for
counterexamples of properties being verified. To be useful, counterexamples provided
by the Alloy Analyzer must agree with Alloy’s semantics as captured in Dynamite’s
calculus. Otherwise, counterexamples generated by the Alloy Analyzer would fail as
counterexamples for the property being verified with the aid of Dynamite.

4. IMPLEMENTATION REMARKS
Implementing Dynamite required solving two tasks, namely,

(1) providing a shallow embedding into PVS of the PDOCFA theories resulting from
the translation of Alloy specifications, and

(2) the careful design of the interaction between PVS and the Alloy Analyzer required
in order to provide the user with the new commands offered by Dynamite.

The proposed solutions are reported in Sections 4.1 and 4.2, respectively.

4.1. Embedding the Alloy Calculus in PVS
Proving Alloy assertions using Dynamite involves generating a PVS specification. Said
specification is obtained as a shallow embedding [Gordon 1989] of the PDOCFA theory
resulting from the translation presented in Def. 3.8. PDOCFA theories obtained from
Alloy models have in common their logical part (operations, their meaning and infer-
ence rules) presented in Defs. 3.1 and 3.2, while they may differ in the extralogical
elements (constants, axioms, theorems) that are directly related to the actual Alloy
specification used as input of the translation. Accordingly, the resulting PVS specifica-
tions are also composed of two parts, one for handling the logical elements of PDOCFA
theories, and another for handling the extralogical ones.

In the general part of the specification the following elements are defined:

— A data type (called Carrier) representing the set R of binary relations from Def. 3.1.
— Constants and functions representing the constants and operators from Def. 3.1. For

example, the composition operator is represented by the PVS function:

composition(x0,x1: Carrier) : Carrier

— PVS axioms capturing the axioms and inference rules presented in Def. 3.2. For
instance,

RA 1 : AXIOM FORALL (x, y, z: Carrier) :
composition(x,composition(y,z))=composition(composition(x,y),z)

— Auxiliary constants, operators and predicates, as the ones presented in the previous
section (π, ρ, univU, ⊗, in, Point), and a few more intended to facilitate the transla-

ACM Transactions on Software Engineering and Methodology, Vol. V, No. N, Article A, Pub. date: January YYYY.

Dynamite: A Tool for the Verification of Alloy Models Based on PVS A:17

tion process. All of these elements are defined using the elements mentioned in the
preceding items. For example, the binary operation ⊗ is defined as follows:

Cross(x,y: Carrier):Carrier =
fork(composition(Pi,x), composition(Rho,y))

PVS natively provides a standard sequent calculus (see [Owre et al. 2001b] for de-
tails). The only rule that has to be incorporated is the ω-rule (see Def. 3.2). Using the
support for natural numbers offered by PVS, this rule is expressed as a PVS axiom.

We present the translation of the extralogical part of the specification in two steps.
We focus first on PDOCFA constants (coming from Alloy signatures and fields) and their
properties. We afterwards deal with the translation of functions, predicates, axioms
and assertions.

When translating an Alloy signature definition it is necessary to introduce a new
symbol for the partial universal relation over atoms from that domain, and another
new symbol for the partial identity formed with those atoms. For instance, the trans-
lation of signature Agent yields the PVS definitions4:

univ this?Agent : Carrier % the partial universal of Agent atoms
iden this?Agent : Carrier % the partial identity of Agent atoms

In addition, axioms enforcing that these constants have the characteristics mentioned
before (being a partial universal relation or a partial identity) must be included. Notice
that this part of the translation may generate more axioms depending on the charac-
teristics of the signature being translated (abstract, one sig, extension, etc.).

Restricting quantifiers to range over atoms, as explained in Section 3.2, requires
adding for each signature a predicate stating that a relation is a point and it is included
in the partial universal relation corresponding to that signature. For signature Agent,
the predicate is5:

this?Agent(R: Carrier): bool = Point(R) AND Leq(R,univ this?Agent)

When translating field definitions, besides the declaration of the corresponding con-
stant, it is necessary to add appropriate axioms stating the restrictions that the defini-
tion imposes on the field. For example, the translation of field routing from signature
Domain leads to the definition of constant this?Domain?routing and to the inclusion of
the following axiom6:

this?Domain?routing : AXIOM FORALL (this: (this?Domain)) :
Leq(this?Domain?routing,

CartesianProduct(
univ this?Domain,
CartesianProduct(Navigation(this,this?Domain?space),

Navigation(this,this?Domain?endpoints))))

This axiom establishes that this?Domain?routing denotes a relation in which, for each
tuple 〈d, i ? g〉, address i is in the space of domain d, and agent g is an endpoint for d.

4Notice that in PVS everything at the right of the % symbol is considered a comment, and that ? is a valid
character in identifiers.
5Leq is the predicate corresponding to the set inclusion operator in.
6Navigation is the operator corresponding to •, and CartesianProduct simulates the behaviour of Cartesian
product between relations of arbitrary arity.

ACM Transactions on Software Engineering and Methodology, Vol. V, No. N, Article A, Pub. date: January YYYY.

A:18 Mariano M. Moscato et al.

The translation of predicates, functions, facts and assertions is direct. It is sufficient
to translate the formula (or expression) that defines each of these constructs and add
the corresponding predicate, function, theorem or axiom to the resulting PVS speci-
fication. For example, assertion BindingPreservesReachability (shown in Fig. 4) is
translated to the PVS theorem:

BindingPreservesReachability : THEOREM
FORALL (d: (this?Domain2), d?? : (this?Domain2),
newBinding: Carrier | Leq(newBinding, CartesianProduct(

univ this?Identifier, univ this?Identifier))):
this?IdentifiersUnused(d, Navigation(newBinding,
univ this?Identifier))
AND this?AddBinding(d,d?? ,newBinding)
IMPLIES FORALL (i: (this?Identifier), g: (this?Agent)) :
this?ReachableInDomain(d,i,g)
IMPLIES this?ReachableInDomain(d?? ,i,g)

On top of this notation pretty-printing algorithms are applied to PVS formulas oc-
curring during the development of proofs. Therefore, the user only sees Alloy syntax
while working within Dynamite. This is one of the important features of Dynamite
because it makes it unnecessary for Alloy users to learn another formalism in order to
prove the given assertions.

Embedding Alloy integers. The characterization of Alloy integers in PDOCFA pre-
sented in Section 3.4 can be easily embedded in PVS as a new PVS theory. Such an
embedding would be suboptimal, since it would miss all the support provided by PVS
for reasoning about integer arithmetic. We will instead use a new PVS theory fint
(for finite ints), parameterized by the bit width. This theory profusely uses theory int
provided by PVS. For example:

— the bit width (noted as bitwidth), is a formal parameter of the theory and has type
posnat (i.e., positive natural).

— the minimum and the maximum of the interval determined by the bit width are
modeled by the integer constants min fint and max fint defined as

−exp2(bitwidth− 1) and exp2(bitwidth− 1)− 1, respectively.

— a PVS predicate is defined for delimiting the numbers in this interval:

inRange fint(n: int): bool = min fint <= n and n <= max fint

— this PVS theory includes the definition of a subtype of int, called fint, that repre-
sents the Alloy integers in the interval:

fint: type = n: int | inRange fint(n)

— all the integer operations supported in Alloy (addition, subtraction, multiplication,
integer division and remainder) are modeled as PVS functions on fint. For example,
addition is defined as

add fint(n1, n2: fint): fint =
if inRange fint(n1+n2) then n1+n2
elsif n1+n2 > max fint

then (min fint-1) + (n1+n2) - max fint

ACM Transactions on Software Engineering and Methodology, Vol. V, No. N, Article A, Pub. date: January YYYY.

Dynamite: A Tool for the Verification of Alloy Models Based on PVS A:19

Formula/Goal Validator

Dynamite Translator

PVS - ILISP

Alloy Mode

PVS
Typechecker

DPS pretty
printer

Specification Translator

Client/Server connector

Legend

Function Call connector

Request/Reply connector

Alloy
Analyzer

Dynamite proof
commands
processor

User

Expression/Formula Translator

Candidate Postulator

PVS
Prover

Dynamite
system

commands
processor

Emacs

off-the-shelf component

Dynamite specific component subsystem

existent component

Fig. 3. C&C view of the Dynamite architecture.

else max fint + (n1+n2) - (min fint-1)
endif

As discussed at the end of section 3.4, it must be noted that this theory does not
support models in which the set of integer atoms is not finite.

4.2. Overview of Dynamite’s Architecture
The current prototype of the Dynamite Proving System was developed as an extension
of PVS. Therefore, we wrote Emacs extensions (for system commands such as those for
opening and editing an Alloy specification), Lisp routines that interact with the PVS
prover engine (to implement the Dynamite-specific commands, the pretty-printing of
the formulas, etc.) and Java code (whose purpose is the translation and validation of
formulas, goals and specifications, as well as the postulation of witness candidates for
existentially quantified assertions, among others).

A component-and-connector view diagram of Dynamite’s architecture showing the
interactions between the main components of the system7 is depicted in Fig. 3.

As explained in [Owre 2008], the PVS prover engine runs as a subprocess of Emacs,
through an ad-hoc ILISP interface [Kaufmann et al. 2002]. We added the implementa-
tion of the Dynamite-specific commands explained in previous sections to this engine,

7It is worth noting that, as usual in C&C diagrams, despite being of the same type, not all the client-server
connectors showed in the figure are implemented in the same way. For example, the connectors between
the “Dynamite Translator” and the Alloy Analyzer are implemented using the API exposed by the latter,
while the connectors linking the “Dynamite proof commands processor” and the “Dynamite Translator” are
implemented through the OS standard input/output subsystem.

ACM Transactions on Software Engineering and Methodology, Vol. V, No. N, Article A, Pub. date: January YYYY.

A:20 Mariano M. Moscato et al.

as PVS strategies and rules (“Dynamite proof commands processor” in the diagram).
These extensions are conservatively sound with respect to the logic of PVS.

We also modified the PVS function for pretty-printing in order to allow the user to
see Alloy formulas in the sequents as long as it can be done. At any point during a
proof the user can deactivate and activate (when the translation back is possible) the
pretty-printer.

The “Dynamite proof commands processor” is responsible for the interaction with the
Java processes that, using the Alloy Analyzer, validate formulas and goals during the
proof, suggest the elimination of (presumably) unnecessary formulas from the sequent,
and postulate expressions that can be used to instantiate existential quantifiers. These
Java processes are collectively referred to as “Dynamite Translator”8.

As Dynamite is an extension of PVS, all the regular PVS proof commands are avail-
able to the user. Some of them, such as case and inst, take formulas or expressions
as parameters. When the pretty-printer is activated, the user can write Alloy formulas
and expressions as parameters for these commands. The “Dynamite proof commands
processor” is also responsible for the translation of those parameters to the correspond-
ing PDOCFA formulas and expressions, via the “Dynamite Translator”.

Dynamite includes Emacs extensions that allow the user to open an Alloy specifica-
tion, generate the corresponding PDOCFA theories and start, or redo, the proof of any
of its assertions (among other system-level functionalities). All these functions can be
accessed through the user menu. Additionally, Dynamite has an Emacs major mode
(“Alloy mode”) that provides syntax highlighting for the manipulation of Alloy code.

5. FEATURES OF DYNAMITE
Proving properties can be seen as a handcraft discipline. It usually requires a high
level of training on the methods adopted to develop the proofs, a deep understanding
of the concepts formalized in the theory and, most of the time, lots of patience. Even
more so if we consider that the person in charge of proving the correctness of the
assertions is (many times) not the person who wrote the model.

Automatic verification of proofs is somewhat comparable to the spell checker in text
editors. It does not help you compose a text, it just guarantees the absence of syntactic
mistakes. To be considered useful, an interactive theorem prover must be capable of
helping the user with the proving process.

Dynamite is more than a proof checker, and in this article we report our experience
in proving properties of a complex model. The key ingredient that makes Dynamite
much more than syntactic sugar on top of PVS is the use of the Alloy Analyzer as a
helper during the development of proofs. The most important cases in which Dynamite
ends up being particularly helpful occur when the user:

— introduces a new hypothesis or a new lemma,
— needs to separate a proof in cases,
— wants to hide some formulas,
— wishes to prune some of the formulas presented by the theorem prover in the sub-

goals produced by the application of a rule,
— has to prove an existentially quantified formula.

When a user starts a proof, the proof tree has only one node. This tree will grow
as the result of the application of proof rules. These applications may result in one or
more nodes that are direct ascendants of the node to which the proof rule was applied.

8Besides inaccuracy, the name is maintained for historical reasons.

ACM Transactions on Software Engineering and Methodology, Vol. V, No. N, Article A, Pub. date: January YYYY.

Dynamite: A Tool for the Verification of Alloy Models Based on PVS A:21

Consider for instance the following proof rules for conjunction:

α, β,Γ ` ∆

α ∧ β,Γ ` ∆
∧ ` Γ ` ∆, α Γ ` ∆, β

Γ ` α ∧ β,∆
` ∧ .

Rule ∧ ` shows that proving a sequent that contains the conjunction α ∧ β in the
antecedent reduces to proving a sequent with both α and β in the antecedent (in this
case, a single new sequent has to be proved). Similarly, rule ` ∧ shows that proving a
sequent with α ∧ β in the consequent reduces to proving two different sequents: one
with α in the consequent, and another one with β in the consequent.

In the following sections we will show the usefulness in the development of proofs
of each of the features contributed by Dynamite. We will use as a running example an
Alloy model for binding in network domains presented in [Zave 2006].

5.1. A Running Example: Binding in Network Domains
The model, presented in [Zave 2006], deals with the formal definition of a mechanism
for binding of identifiers in the delivery of messages in computer networks. Thus, the
model is not a specification of an isolated software or hardware artifact, but rather
the specification of network services whose implementation may involve several soft-
ware and hardware agents. The model describes how communicating agent identifiers
are bound so that the messages reach their correct destination. Properties about the
possibility of reaching an agent, determinism in the delivery of messages, existence of
cycles in the routing of messages and the possibility of constructing a return path for
a message are formally specified in the model. In particular, the model studies how
these properties are affected by the addition of new bindings between identifiers.

When an agent wants to send a message to another agent a communication is es-
tablished. That communication may involve intermediary agents that just forward the
message in its way to its destination. The original sender of the message and its in-
tended final receiver are called the endpoints of the communication. Endpoints are
organized into domains. Each domain has its own set of endpoints, and uses identi-
fiers to recognize them. Identifiers are called addresses. Additionally, a domain keeps
track of how agents are identified by particular addresses. Paths describe connections
from a generator agent to an absorber agent assuming the generator can be recognized
by address source and the absorber by address dest.

A simplified version of the previous concepts in Alloy takes the following form:

sig Agent {}
abstract sig Identifier { }
sig Address extends Identifier { }

sig Domain { sig Path {
endpoints: set Agent, source: Address,
space: set Address, dest: Address,
routing: space -> endpoints generator: Agent,

} absorber: Agent
}

A domain supports a path if the connections described by the path are consistent
with the domain. The following predicate characterizes when a domain supports a
path:

ACM Transactions on Software Engineering and Methodology, Vol. V, No. N, Article A, Pub. date: January YYYY.

A:22 Mariano M. Moscato et al.

pred DomainSupportsPath [d: Domain, p: Path] {
p.source in (d.routing).(p.generator) and
p.absorber in (p.dest).(d.routing) }

When a message has to be send to an endpoint, the identifier used by the initiator to
indicate the destination must be bound to the identifier used by the domain to locate
the receiver. This binding is done in three ways. The simplest one is when the initiator
is responsible for performing the binding. The message sent has as destination the ac-
tual identifier of the receiver. The second scenario occurs when the message sent by the
initiator is delivered to an agent that is not the intended receiver. This agent, called
handler, looks up the corresponding binding, updates the destination address and for-
wards the message. The third one is basically the same as the second one, but the
original destination identifier is composed of two parts which are used by the handler
to locate the next agent in the forwarding chain. These communication patterns show
the need for some distinction in the identifiers used in the model. Besides addresses,
there will be unrestricted identifiers called names, and complex identifiers used in the
third kind of communications. Thus, signature Identifier is extended by signatures
Name (modeling unrestricted identifiers) and AddressPair (for compound identifiers):

sig Name extends Identifier { }
sig AddressPair extends Identifier {

addr: Address,
name: Name }

The binary relations addr and name are defined to formalize the structure of complex
identifiers.

The possible bindings in each domain are specified by a ternary relation

dstBinding ⊆ Domain× Identifier× Identifier .

We introduce dstBinding (destination binding) by extending the signature Domain, and
constraining its meaning with a signature axiom.

sig Domain2 extends Domain {
dstBinding: Identifier -> Identifier

} {
all i: Identifier | i in dstBinding.Identifier implies
(
(i in Address implies i in space) and
(i in AddressPair implies i.addr in space)

)
}

Paths are also extended in order to include a new field origDst representing the
identifier originally given as destination:

sig Path2 extends Path {
origDst: Identifier

}

A predicate AddBinding states how a domain is affected by the addition of new bind-
ings:

ACM Transactions on Software Engineering and Methodology, Vol. V, No. N, Article A, Pub. date: January YYYY.

Dynamite: A Tool for the Verification of Alloy Models Based on PVS A:23

pred ReachableInDomain [d: Domain2, i: Identifier, g: Agent] {
some a: Address |

a in i.*(d.dstBinding) and
a !in (d.dstBinding).Identifier and
g in a.(d.routing)

}

assert BindingPreservesReachability {
all d,d’: Domain, newBinding: Identifier->Identifier |

IdentifiersUnused[d,newBinding.Identifier] and
AddBinding[d,d’,newBinding]
implies (all i: Identifier, g: Agent |

ReachableInDomain[d,i,g] implies ReachableInDomain[d’,i,g])
}

check BindingPreservesReachability for 4 but 2 Domain

Fig. 4. A nontrivial assertion: BindingPreservesReachability.

pred AddBinding[d,d’:Domain2, newBinding:Identifier -> Identifier]{
-- Precondition: the new bindings can be applied in the domain.

all i: Identifier | i in newBinding.Identifier implies
((i in Address implies i in d.space) and

(i in AddressPair implies i.addr in d.space)
) and

-- Postconditions:
d’.endpoints = d.endpoints and
d’.space = d.space and
d’.routing = d.routing and
d’.dstBinding = d.dstBinding + newBinding

}

An agent g is considered “reachable in a domain d from an identifier i” if:

— i is connected to an address a in the reflexive–transitive closure of the binary rela-
tion formed by all the bindings corresponding to d,

— a cannot be bound to another identifier in d, and
— in domain d, a can route messages to g.

Following Zave’s model, and recalling that “*” denotes reflexive–transitive closure in
Alloy, reachability is modeled by the predicate ReachableInDomain, shown in Fig. 4.
That figure also presents assertion BindingPreservesReachability. This assertion
states that if an agent is reachable in a domain d, it is also reachable in the do-
main resulting from adding a new binding to d, provided that the newly bound iden-
tifiers are not used in d. This latter condition is formalized by the following predicate
IdentifiersUnused:

pred IdentifiersUnused [d: Domain2, new: Identifier] {
no ((d.routing).Agent & new) and
no ((d.dstBinding).Identifier & new) and
no (Identifier.(d.dstBinding) & new)

}

ACM Transactions on Software Engineering and Methodology, Vol. V, No. N, Article A, Pub. date: January YYYY.

A:24 Mariano M. Moscato et al.

A domain is called deterministic if each identifier is associated to at most one agent.
Assertion BindingPreservesDeterminism states that

whenever a new binding for an unused identifier is added to a deterministic
domain, it remains deterministic.

A domain is considered non-looping if the transitive closure (denoted by)̂ of the
bindings for that domain has no cycles. Assertion BindingPreservesNonlooping then
states that

the addition of a new binding to a non-looping domain keeps this condition
as long as the transitive closure of the new binding does not have cycles.

Another desirable property of a network is the capability to send a message to the
sender of a previously received message. This is called returnability. A domain in which
it is possible to return the received messages is called a returnable domain. In order to
write conditions ensuring returnability of a domain, it is necessary to study how the
source identifiers can be modified by the handlers that forward the message, because
the final source identifier is used by the receiver as the destination of the return mes-
sage. An assertion StructureSufficientForReturnability is also modeled in [Zave
2006].

In [Zave 2006], Zave used the Alloy Analyzer to analyze the model and concluded
that the previously presented assertions hold for Alloy domains containing at most 2
network domains and 4 elements in each set (such as identifiers, agents, etc). Using
Dynamite we proved that all these assertions hold independently of the maximum
amount of elements in each set.

5.2. Introduction of Hypotheses and Lemmas
Many times, when attempting to prove a sequent Γ ` ∆, a new hypothesis α is intro-
duced as a means to simplify and modularize the proof. Hypothesis α can then be used
in the proof of the sequent, but will have to be discharged later. A rule as the one just
described can be implemented using the PVS rule case. Still, we may want to go a step
further and gain some confidence on the suitability of formula α. Does α actually follow
from Γ?. It is frustrating to realize, after finishing the proof with the aid of formula α,
that the new hypothesis cannot be discharged, deeming the previous proof effort use-
less. In order to reduce the risk of introducing inappropriate hypotheses, Dynamite
introduces the rule dps-hyp:

Γ, α ` ∆ Γ ` α
Γ ` ∆

dps-hyp(α) .

The use of rule dps-hyp triggers a call to the Alloy Analyzer in order to ana-
lyze whether sequent Γ ` α follows from the model. If a counterexample is found
within the provided scopes, it is reported to the user and the hypothesis is re-
moved. Let us see the schematic representation of the proof tree for assertion
BindingPreservesReachability (one of the properties we proved), shown in Fig. 5. A
dps-hyp command was applied in each grey node. It is worth noting that those nodes
are the main reason why a branch splitting occurs in that example. This shows that a
mistake in the introduction of a case can invalidate a major part of the proof.

A similar situation occurs when a lemma is introduced along a proof as a means to
modularize the proof effort. Proof rule dps-lemma calls the Alloy Analyzer in order to
analyze whether the introduced lemma is indeed valid.

The experience in using Dynamite on the case study presented here showed us that
this feature is a dramatic improvement with respect to the standard case introduction.
If a counterexample is found it is shown to the user, so the hypothesis or lemma can

ACM Transactions on Software Engineering and Methodology, Vol. V, No. N, Article A, Pub. date: January YYYY.

Dynamite: A Tool for the Verification of Alloy Models Based on PVS A:25

Fig. 5. Simplified proof tree for the assertion BindingPreservesReachability.

be corrected using the information revealed by the counterexample. Counterexamples
also give the user a better grasp on the model because they expose tricky corner cases.

5.3. Introduction of cases
The application of the Dynamite dps-case command splits the current branch into two
branches, using a provided formula α as a parameter. In one of the branches α appears
as a new formula in the antecedent, and it is placed in the consequent in the other
branch:

Γ, α ` ∆ Γ ` ∆, α

Γ ` ∆
dps-case(α) .

Notice that having α as a proof obligation is equivalent to having ¬α as a hypoth-
esis, which explains why α allows us to separate the proof into cases. The Dynamite
dps-case command improves over the regular PVS case command by using the Alloy
Analyzer in order to automatically search for models of the formulas∧

γ∈Γ

γ

 ∧ α, and

∧
γ∈Γ

γ

 ∧ ¬α .
The existence of the models guarantees that formula α indeed splits into meaningful

cases. If the Alloy Analyzer does not yield a model for any of the formulas, this is
reported to the user.

5.4. Hiding sequent formulas
During the development of a proof the amount of hypotheses tends to grow. For ex-
ample, new hypotheses are introduced when a case splitting is performed. The infor-
mation expressed in these hypotheses may be useful for closing some branches and
useless for some others. Thus, a sequent may contain formulas that are irrelevant to
close branches originating in the sequent. For example, after a branch splitting some
formulas may no longer be needed for some of the sub-goals, and be necessary to prove
others.

In Fig. 6 we show an open branch that was obtained during the proof of property
BindingPreservesReachability, reached after a few applications of proof commands.
Notice that, even when the only relevant formulas of the sequent are 1 and -1, the
other 9 formulas in the sequent obfuscate the job of proving the assertion, turning
the sequent very difficult to understand at first glance. This is a situation that occurs
quite often. For instance, predicates are often used to wrap several related concepts
which apply in different sub-goals. Using one of those concepts requires us to expand

ACM Transactions on Software Engineering and Methodology, Vol. V, No. N, Article A, Pub. date: January YYYY.

A:26 Mariano M. Moscato et al.

{-1} (a!1 in (i!1 . (*(d!1 . dstBinding!1))))
[-2] (IdentifiersUnused (d!1, (newBinding!1 . Identifier)))
[-3] (all i : Identifier| ((i in (newBinding!1 . Identifier)) =>

(((i in Address) => (i in (d!1 . space!1))) &&
((i in AddressPair) => ((i . addr!1) in (d!1 . space!1))))))

[-4] ((d’!1 . endpoints!1) = (d!1 . endpoints!1))
[-5] ((d’!1 . space!1) = (d!1 . space!1))
[-6] ((d’!1 . routing!1) = (d!1 . routing!1))
[-7] ((d’!1 . dstBinding!1) = ((d!1 . dstBinding!1) + newBinding!1))
[-8] (g!1 in (a!1 . (d!1 . routing!1)))
|-------

{1} (a!1 in (i!1 . (*((d!1 . dstBinding!1) + newBinding!1))))
[2] (a!1 in (i!1 . (*(d’!1 . dstBinding!1))))
[3] (a!1 in ((d!1 . dstBinding!1) . Identifier))

Fig. 6. Example of a sequent obtained after the application of several proof commands.

the predicate. Doing this will not only result in the appearance of the desired formula
as hypothesis, but the rest of the sub-formulas will also appear as part of the sequent.

To solve this, it is common for interactive theorem provers to provide commands for
hiding formulas from a goal, under the assumption that they will not be used. On the
other hand, the use of this command also presents a risk. If, by mistake, a relevant
formula is hidden, the user will not be able to close the branch. Given a sequent Γ ` ∆
(with Γ = { γ1, . . . , γk } and ∆ = { δ1, . . . , δm }) result of hiding some formulas, the
Dynamite command dps-validate-goal automatically searches for counterexamples of
the logical implication between the conjunction of the formulas in the antecedent and
the disjunction of the formulas in the consequent: ∧

1≤i≤k

γi

⇒
 ∨

1≤j≤n

δj

 . (3)

In this way, if a counterexample is found, it means that the proof objective cannot be
reached because the hypotheses are not sufficient to prove the desired property. If that
goal is the result of hiding some formulas from a sequent for which a similar analysis
did not return a counterexample, it means that some of the newly hidden formulas
were necessary.

5.5. Pruning of goals
As we explained in Section 5.4, sequents can grow up to a point in which they get
very difficult to be understood. A handy and time-saving feature is the use of the Alloy
Analyzer that Dynamite does to prune goals.

Let us assume we are proving a sequent Γ ` ∆ (where Γ = { γ1, . . . , γk } and
∆ = { δ1, . . . , δm }) from a theory Ω = {ω1, . . . , ωn }. In order to reduce the proof search
space we will try to identify formulas from Γ, ∆ and Ω that can be safely removed.
Notice that having fewer formulas actually reduces the proof search space. Many proof
attempts that could depend on the removed formulas (rules for instantiation, rewrit-
ing, or applying strategies) are now avoided. This reduces the number of instantiations
of inference rules that the theorem prover has to consider, as well as helps the user stay
focused on the relevant parts of the sequent.

When the Dynamite proof command dps-hide is applied on sequent Γ ` ∆, the system
builds an Alloy model containing the original Alloy model Ω under analysis and an
assertion on the validity of formula (3). Notice that analyzing with the Alloy Analyzer
the newly built model Ω′ will not return counterexamples (otherwise sequent Γ ` ∆

ACM Transactions on Software Engineering and Methodology, Vol. V, No. N, Article A, Pub. date: January YYYY.

Dynamite: A Tool for the Verification of Alloy Models Based on PVS A:27

(-1) (a in (i . ^ ((newBinding + (d.dstBinding)))))
(-2) no (((Identifier . (d.dstBinding)) & (newBinding . Identifier)))
(-3) no ((((d.dstBinding) . Identifier) & (newBinding . Identifier)))
(-4) (not (a in (i . ^ newBinding)))
(-5) (not (a in (i . ^ (d.dstBinding))))
|---
(1) some ai: Identifier | ai in i.^newBinding && a in ai.^(d.dstBinding)

Fig. 7. Sequent with existentially quantified conclusion.

would not be valid). We then request the Alloy Analyzer for an UnSAT-core of Ω′. An
Alloy UnSAT-core [Torlak et al. 2008] of Ω′ is a subset of Ω′ that is also inconsistent
(notice that inconsistency is defined up-to the considered scopes). The UnSAT-cores
retrieved by the Alloy Analyzer do not need to be minimal, but many times are proper
subsets of the premises and consequents of the sequent and theory under analysis.
Command dps-hide then hides all those formulas in Ω, Γ and ∆ that are not part of the
retrieved UnSAT-core. As in all the previous commands that involve using the Alloy
Analyzer, it may be the case that a necessary formula is hidden. In our case-study, out
of the 69 times command dps-hide was used, only in one occasion a necessary formula
was hidden. But, equally important, the command allowed us to identify two places
where unnecessary detours (proof steps involving formulas that could be removed)
were taken. Removing detours allowed us to reduce the proof lengths from 969 proof
steps to 573.

This feature was one of the most useful in the verification of the model presented in
this paper. The importance of this rule is that it provides a guide in the construction
of the proof by revealing those formulas that will be needed to prove the property. For
instance, the relevant formulas in the sequent depicted in Fig. 6 (formulas -1 and 1)
are automatically identified by applying this command.

5.6. Automated Witness Generation
When proving the property BindingPreservesDeterminism, the sequent depicted in
Fig. 7 is produced. Notice that the formula in the consequent is existentially quantified.
According to the proof calculus for PVS described in [Owre et al. 2001b], in order to
prove the sequent we must find a suitable witness (i.e., a term that, when substituted
for variable ai, makes the resulting sequent provable):

Γ ` A{x← t},∆
Γ ` (∃x : A),∆

` ∃

A closer look at the proof calculus shows that the only rules that require creativity
are the Cut rule [Owre et al. 2001b, p. 17] (where an appropriate formula A has to be
determined), the rules for quantifiers [Owre et al. 2001b, p. 18], or rules for equational
reasoning where algebraic properties of the relational operators are to be applied. No-
tice that rule ∀ ` can be substituted (by promoting the universally quantified formula
from the antecedent to the consequent of the sequent) by an application of rule ` ∃.
In case we are confronted with a sequent with either a universally quantified formula
in the consequent, or an existentially quantified formula in the antecedent, the quan-
tifiers can be skolemized away through the application of proof rules ` ∀ and ∃ `,
respectively. The Cut-elimination theorem [Gentzen 1935] states that proofs can be
replaced by (usually more complex) proofs that do not use the Cut rule. In [Frias 2002,
Thm. 5.2] it is proved that PDOCFA terms that do not include reflexive-transitive clo-
sure can be translated to equivalent first-order logic formulas. Therefore, creativity in
proofs can be pinpointed to those places where:

ACM Transactions on Software Engineering and Methodology, Vol. V, No. N, Article A, Pub. date: January YYYY.

A:28 Mariano M. Moscato et al.

(1) equational reasoning involving reflexive-transitive closure is required, or
(2) witnesses for the application of rule ` ∃ must be produced.

In order to reduce user intervention, in this section we will present an effective tech-
nique that uses the Alloy Analyzer in order to automatically generate witness candi-
dates. Also, we will present several examples where the application of the proposed
technique yields the required witnesses.

In Alg. 1 we present the algorithm we use for witness candidate generation. Recall
that environments are the semantic structures in which Alloy models are evaluated.

1 witnessCandidate(Γ, δ) /* δ has the form some x : α[x] */
2 DW ← ∅; /* DW will store the discarded witnesses found so far */
3 result ← ∅;
4 E ← E0; /* E0 is an environment such that E0 |= Γ */
5 α′ ← α;
6 while (result == ∅ ∧ E != null) do
7 if there exists a witness precandidate t in E then
8 if t is a valid witness precandidate then
9 result ← result ∪ { t };

10 else
11 DW ← DW ∪ { t };
12 E ← Ei; /* Ei is the environment in which t failed */
13 for each t′ ∈ shrunkenWitnessesFrom(t) do /* shrunkenWitnessesFrom(t) are the

witnesses with the same syntactic structure as t but with every constant c
replaced by a constant denoting a subset of c */

14 if t′ is a valid witness precandidate then
15 result ← result ∪ { t′ };
16 end
17 end
18 if (result == ∅) then
19 if in every environment t contains atom a such that α′[a] holds then
20 α′ ← α′[t & x]; /* α′ has been relativized */
21 else
22 if there is a coverage C ⊆ DW then
23 result ← C;
24 end
25 end
26 end
27 end
28 else
29 if α′ has been relativized then
30 α′ ← α;
31 else
32 E ← null;
33 end
34 end
35 end
36 end

Algorithm 1: Algorithm for witness candidate generation.

In the following paragraphs we will explain the algorithm and argue about its cor-
rectness, as well as discuss in what conditions the algorithm may fail to produce a
candidate. Afterwards we will describe several experiments we performed.

5.6.1. The Inputs to the Algorithm (line 1). Given a sequent Γ ` some x : T | α(x) that has to
be proved, the algorithm receives as inputs the set Γ and the formula some x : T | α(x)
for which the witness must be produced.

ACM Transactions on Software Engineering and Methodology, Vol. V, No. N, Article A, Pub. date: January YYYY.

Dynamite: A Tool for the Verification of Alloy Models Based on PVS A:29

(Ax)
Γ, α(t1), · · · , α(tn) ` α(t1), · · · , α(tn)

(|| ` × n)
Γ, α(t1) || · · · || α(tn) ` α(t1), · · · , α(tn)

(Coverage)
Γ ` α(t1) || · · · || α(tn)

(Weak)
Γ ` α(t1) || · · · || α(tn), α(t1), · · · , α(tn)

(Cut)
Γ ` α(t1), · · · , α(tn)

(` ∃ × n)
Γ ` some x : T | α, · · · , some x : T | α

(Contraction× n)
Γ ` some x : T | α

Fig. 8. Use of coverage { t1, . . . , tn } for proving an existential formula.

sig A {}
one sig cA extends A {}
sig B {

f1 : A
}
assert exstentialAssert { some x : B | alpha(x)}

Fig. 9. A Sample Alloy Model.

5.6.2. Initialization (lines 2–5). Variable DW will store those witness precandidates that
are eventually discarded. Variable result stores the output of the algorithm, and its
content will be discussed in Section 5.6.3. Variable E is initialized with E0, any envi-
ronment in which Γ holds. E0 is produced by invoking the Alloy Analyzer.

5.6.3. The Output (variable result). Variable result returns a coverage for the formula
under analysis. A coverage is a set of terms { t1, . . . , tk } such that the Alloy Analyzer
is able to verify the sequent Γ ` α(t1) || · · · || α(tk). The following simple Alloy model
shows that coverages are many times necessary.

sig A {}
sig B in A {}
one sig x1, x2 in A {}
fact { x1 in B || x2 in B }
assert needsCoverage { some x : A | x in B }

In Alloy notation, signature B denotes a subset of A, and objects x1 and x2 belong
to A (and since B is contained in A, also perhaps to B). Notice that the fact guarantees
that the assertion is indeed valid. Yet no single witness exists. In some environments
x1 will be a witness, and in others the witness will be x2. Notice also that:

— x1 in B || x2 in B holds as per the fact, and
— (x1 in B || x2 in B) => some x:A | x in B holds.

Therefore, the coverage { x1, x2 } allows us to prove the existential formula. This rea-
soning is easily generalized. The proof-schema in Fig. 8 shows that a coverage allows
us to prove the existentially quantified formula.

5.6.4. Building a Witness Precandidate (line 7). This is one of the main contributions of
Section 5.6. The precandidate is built by internalizing Alloy’s syntax inside an Alloy
model. We will present the technique by means of a simple running example. Let us
consider the Alloy model presented in Fig. 9. The model is instrumented with appro-
priate signatures, functions and predicates. In Fig. 10 we present a fragment of the
resulting Alloy model.

The instrumented model introduces new signatures that model syntactic internal-
izations of the source model signatures and fields, as well as of the relational operators

ACM Transactions on Software Engineering and Methodology, Vol. V, No. N, Article A, Pub. date: January YYYY.

A:30 Mariano M. Moscato et al.

sig A {}
one sig cA extends A {}
sig B { f : A }

abstract sig Term {
complexity : Int

}
abstract sig UnaryTerm extends Term {
unaryValue : set univ

}
abstract sig BinaryTerm extends Term {
binaryValue : univ -> univ

}
one sig UnivSyntax extends UnaryTerm{}{ unaryValue = univ }
one sig A_Syntax extends UnaryTerm{}{ unaryValue = A }
one sig cA_Syntax extends UnaryTerm{}{ unaryValue = cA }
one sig B_Syntax extends UnaryTerm{}{ unaryValue = B }
one sig f_Syntax extends BinaryTerm{}{ binaryValue = f }

fact sigComplexity{
A_Syntax.complexity=1 and cA_Syntax.complexity=1 and
B_Syntax.complexity=1 and f_Syntax.complexity=2 }

sig UnarySum extends UnaryTerm {
operand0, operand1 : UnaryTerm

}{ complexity = operand0.complexty + operand1.complexity + 1
unaryValue = operand0.unaryValue + operand1.unaryValue }

sig BinaryIntersection extends BinaryTerm {
operand0, operand1 : BinaryTerm

}{ complexity = operand0.complexty + operand1.complexity + 1
binaryValue = operand0.binaryValue & operand1.binaryValue }

fact UnarySumOperand0IsNotUniv {
all t :UnarySum | t.operand0 !in UnivSyntax }

run witnessSearch { some t : UnaryTerm | some t.unaryValue and
all v : t.unaryValue | alpha(v) }

Fig. 10. Fragment of Alloy model with internalized Alloy syntax.

(in Fig. 10 we only include the union of unary relations and the intersection of binary
relations). We also include a number of facts the preclude redundant instances. For
example, fact UnarySumOperand0IsNotUniv states that the first operand in a sum can-
not be the universal relation (after all, the result of the union would be the set univ).
Several other properties of this kind are included.

Finally, using the Alloy Analyzer we look for an environment that satisfies for-
mula witnessSearch. The environment allows us to retrieve a term t that denotes
a nonempty set in which all objects satisfy formula alpha. This is the witness precan-
didate. In order to prevent the analysis from returning previously discarded terms,
the model includes a fact that is iteratively enriched in order to prevent previously
discarded terms from being produced.

ACM Transactions on Software Engineering and Methodology, Vol. V, No. N, Article A, Pub. date: January YYYY.

Dynamite: A Tool for the Verification of Alloy Models Based on PVS A:31

5.6.5. Validating a Witness Precandidate (lines 8–9). A witness precandidate t is valid in
an environment. In contrast, a witness candidate must be valid in all environments.
In order to analyze whether t can be considered as a witness candidate, we modify the
Alloy model from Fig. 9 by replacing assert existentialAssert by the following:

assert witnessPrecandidateValidation {
some t and all v : t | alpha(v) }

The assertion requires t to denote a nonempty set in which all the elements satisfy
formula alpha in all environments. If no counterexamples are produced by the Alloy
Analyzer, term t is stored in the algorithm output variable result and promoted to
witness candidate.

5.6.6. Witness Precandidate Failure by Over-Approximation (lines 13–20). Let us assume that
witness precandidate t fails in environment Ei. According to Section 5.6.5, this implies
that either t is empty in Ei or some value from the set denoted by term t does not
satisfy alpha. The second condition may hold even if t provides at least one value that
satisfies alpha in each environment. In this case we say that term t over-approximates
a witness candidate. In order to avoid this over approximation we will use two tech-
niques:

(1) Recalling that Alloy signatures are constants that may appear in term t, term t
may fail to be a witness candidate because it includes a signature that is larger than
necessary. For instance, in [Zave 2006] we have as part of the signature hierarchy

sig Domain3 extends sig Domain2 extends sig Domain .

Semantically, the sets denoted by the signatures satisfy

Domain3 ⊆ Domain2 ⊆ Domain .

Therefore, given a term t of the form Domain.routing that fails to be candidate, Dy-
namite explores whether Domain2.routing or Domain3.routing are indeed candidates.
The technique is applied in lines 13–17.

(2) The witness candidate could then be the intersection of t with another term. We
explore this possibility in lines 18–20.

Over-approximation can be checked with the aid of the Alloy Analyzer by checking the
assertion

assert overApproximation { some v : t | alpha(v) }

5.6.7. Witness Precandidate Failure by Under-Approximation (lines 22–23). As explained in
Section 5.6.6, term t may fail to be a witness precandidate because in some environ-
ment e it denotes a set that contains an object that does not satisfy α. Yet there might
be an already discarded witness t’ that satisfies α in environment e. We then explore
if there is a subset of the discarded witnesses that jointly with t form a coverage. If a
coverage exists, it is returned in variable result. A coverage is determined with the aid
of the Alloy Analyzer by checking assertion

assert underApproximation { all v:univ |
(v in t1 => alpha(v)) || ... || (v in tn => alpha(v))}

5.6.8. Lack of Witness Precandidates (lines 29–33). If a new witness precandidate is not
found in the selected environment, it may be due to, essentially, four reasons:

ACM Transactions on Software Engineering and Methodology, Vol. V, No. N, Article A, Pub. date: January YYYY.

A:32 Mariano M. Moscato et al.

(1) the existentially quantified formula is not true within the prescribed scopes,
(2) the bound on the complexity of terms considered is smaller than required (new

witness precandidates might be found if the complexity bound were increased),
(3) formula α′ is relativized, and therefore part of the available complexity is spent on

the relativization term, and not enough complexity is left to build a new precandi-
date,

(4) the included strategies fail to produce a witness.

In the first case the lack of precandidates may be due to the exhaustion of all the
witness precandidates, and the algorithm should terminate without returning a pre-
candidate. Similarly, in the second case the algorithm should be run again but with an
increase in the complexity bound. The third case will occur when formula α′ is rela-
tivized. Therefore, we will remove the relativization in order to enable the search for
further witness precandidates. In the fourth case, new strategies should be added to
the algorithm.

5.6.9. Termination and Correctness. Termination is guaranteed because in each loop it-
eration a new witness precandidate must be generated; due to the bound on term
complexity only finitely many terms can be generated. Correctness, understood as pro-
ducing a witness regardless of the analysis scopes, cannot be achieved due to the un-
decidability of classical first-order logic. Therefore, the algorithm may produce witness
candidates that are not suitable for finishing the proof. The effectiveness of the algo-
rithm is evaluated experimentally below.

5.6.10. Experimental Evaluation. In this section we will present 4 examples on which we
used Dynamite in order to generate witness candidates automatically. We extended
Dynamite with a new command solve-inst that, given a sequent whose consequent is
a single existentially quantified formula, returns a witness candidate. Besides bound-
ing the total complexity of the generated candidates, it is also possible to bound the
number of times each Alloy operator is allowed to occur in generated candidates. In all
the experiments each Alloy operator (with the exception of the sequential composition,
that was not bounded) was allowed to occur 0 or 1 times. We used a computer with the
following configuration: Intel(R) Core(TM) i5 quad core CPU running at 2.67GHz, 8GB
of RAM. The operating system was Debian GNU/Linux 6.0, running Kernel 2.6.32-5-
amd64.

Example 1. When verifying assertion BindingPreservesDeterminism the following
assertion had to be proved:

assert prop1 {some ai: Identifier |
ai in i.^newBinding && a in ai.^(d.dstBinding)}

Dynamite retrieves as witness the term9

{((i.^newBinding):>(*((d.dstBinding)).a))},

which indeed allowed us to complete the proof. It took Dynamite 172 seconds to retrieve
the witness.

Example 2. In [Jackson 2012, Appendix A], an exercise involving properties of binary
relations is proposed. As part of the Alloy model, the following assertion is presented:

9Given a set S and a relation R, the Alloy terms S<:R and R:>S restrict the domain/codomain or relation
R to set S, respectively.

ACM Transactions on Software Engineering and Methodology, Vol. V, No. N, Article A, Pub. date: January YYYY.

Dynamite: A Tool for the Verification of Alloy Models Based on PVS A:33

assert ReformulateNonEmptinessOK {
all r: univ->univ |

some r iff (some x, y: univ | x->y in r) }

Let us consider the assertion obtained by:

— skolemizing the universal quantifier,
— substituting iff by implies, and
— making the antecedent of the implication (some r) a new hypothesis.

The resulting model then contains:

one sig D {r : univ -> univ}
fact {some D.r}
assert ReformulateNonEmptinessOK {

some x, y: univ | x->y in D.r
}

Notice that there are two quantified variables. Therefore, we applied Dynamite in
order to provide first a witness for the outer quantification. Dynamite returned term
(D.(r.univ)) in 161 seconds. Once the witness for the outer quantifier was found, we
looked for a witness for the inner quantifier. Since term (D.(r.univ)) denotes a set,
Dynamite produces the following assertion in order to look for the inner witness:

fact {x1 in (D.(r.univ))}
assert ReformulateNonEmptinessOK {

some y: univ | x1->y in D.r
}

Dynamite returns term (x1.(x1<:(D.r))) as the inner witness in 79 seconds. Using
these witnesses the assertion is easily verified.

Example 3. In [Ramananandro 2008], as part of an Alloy model of the Mondex elec-
tronic purse, the following assertion was presented to be analyzed with the aid of the
Alloy Analyzer:

assert Rbc_init {
all c : ConWorld |

ConInitState [c]
implies some b : ConWorld {

Rbc [b, c]
BetwInitState [b]

}
}
check Rbc_init for 10 but 2 ConState -- 10007s
check Rbc_init for 10 but 10 ConState -- aborted by user after

-- 7h computation [minisat]

According to the original model, it took the Alloy Analyzer 2.8 hours to analyze
the assertion using 2 ConState, and the analysis was interrupted after 7 hours for a
scope of 10 ConState. We verified this assertion using Dynamite in under 10 minutes.
During the proof it was necessary to determine a witness for the existential quantifier
in assertion Rbc init. It took Dynamite 90 seconds to provide the correct witness.

ACM Transactions on Software Engineering and Methodology, Vol. V, No. N, Article A, Pub. date: January YYYY.

A:34 Mariano M. Moscato et al.

module fm06_extra2
open fm06_defs

sig Agent { }
abstract sig Identifier { }
sig Name, Address extends Identifier { }
sig AddressPair extends Identifier {

addr: Address, name: Name
}
sig Domain {

endpoints: set Agent, space: set Address, routing: space -> endpoints
}
sig Path {

source: Address, dest: Address, generator: Agent, absorber: Agent
}
sig Domain2 extends Domain {

dstBinding: Identifier -> Identifier
} { all i: Identifier |

i in dstBinding.Identifier =>
((i in Address => i in space)

&& (i in AddressPair => i.addr in space))
}
sig Path2 extends Path { origDst: Identifier }
one sig a in Address {}
one sig d in Domain2 {}
sig NB in Identifier { newBinding: set Identifier }
one sig i in Identifier {}
one sig i2 in Identifier {}
one sig i3 in Identifier {}

fact { all disj p1, p2: AddressPair |
p1.addr != p2.addr || p1.name != p2.name }

fact { some Agent }
fact { some Identifier }
fact { some Domain }
fact { some Path }
fact f1 { some i.^newBinding }
fact f2 { #(i.^newBinding + i2.^newBinding) = 2 }
fact f3 { some i2.^newBinding }
fact f4 { i.^newBinding != i2.^newBinding }

assert coverSample { some x: Identifier | one x.^newBinding }
check coverSample for 6 but 2 Domain

Fig. 11. A sample model leading to a non-atomic coverage witness.

Example 4. This example allows us to show a case in which Dynamite provides a
non-atomic coverage as witness candidate. We present the Alloy model including as-
sertion coverSample in Fig. 11. Running the witness candidate generator on assertion
coverSample returned the coverage {i,i2}. Notice that term i+i2 is not a solution due
to fact f2. Let us consider the Alloy instance depicted in Fig. 12. Notice first that the
instance is indeed a model for the specification. Also, the instance shows that i2 alone

ACM Transactions on Software Engineering and Methodology, Vol. V, No. N, Article A, Pub. date: January YYYY.

Dynamite: A Tool for the Verification of Alloy Models Based on PVS A:35

a

i

i2
b

newB
inding

newBindin
g

newBinding

Fig. 12. An Alloy instance for assertion coverSample.

cannot be a witness candidate. If we permute i2 and i in Fig. 12, we see that i cannot
be a witness candidate. It took Dynamite 16 seconds to provide the witness.

5.6.11. Limitations. This technique heavily relies on the model-finding ability of the
Alloy Analyzer. Consequently, it shares the same limitations. When the search for a
candidate begins, limits on the search space must are established by fixing a scope.
Unlike standard Alloy models where the scope only constrains the explored semantic
environments, Alloy models used for witness generation internalize Alloy’s syntax as
well. Therefore, besides providing scopes for data domains, we must also provide scopes
for syntactic domains (maximum amount of occurrences of each operator symbol in
the candidates, for example). If the limits imposed to the search are too restrictive, no
admissible candidate will be generated. Otherwise, if the limits are too lax, the search
can take too much time or lead to an out of memory exception.

6. CONCLUSIONS AND FURTHER WORK
The overall experience of proving theorems using Dynamite was very positive. It is
remarkable that, although the crucial parts of the proofs are still relying on the user,
using the Alloy Analyzer during the proving process proved to be useful in many ways:

— early detection of errors during key-steps of proofs helped us save time,
— the counterexamples retrieved by the Alloy Analyzer helped us improve our under-

standing of the problem domain,
— having leaner sequents helped us focus on the right proof strategies,
— using the Alloy language during proofs contributed to smoothing the learning curve,
— automatically finding witnesses for existentially quantified assertions allowed us to

shift the focus to higher-level proof strategies.

The work reported in this article revealed also some limitations of Dynamite in its
current state. In the first place, the automation in the proving process is scarce. Only
few proof steps are automatically solved (for instance, those referring to typing of re-
lations or to witness candidate generation). Another limitation this work revealed was
the need for an easily portable knowledge base that, as a library of predefined lemmas,
allows the use of known general properties in the user-specific proofs. These are areas
in which we are currently working.

ELECTRONIC APPENDIX
The electronic appendix for this article can be accessed in the ACM Digital Library.

REFERENCES
ALEXANDR ANDONI, DUMITRU DANILIUC, SARFRAZ KHURSHID. AND DARKO MARINOV. 2004. Evaluating

the “Small Scope Hypothesis”. Unpublished. Retrieved November 2, 2012, from http://mulsaw.lcs.mit.
edu/papers/SSH.ps.

KONSTANTINE ARKOUDAS. 2001. Type-ω DPLs. MIT AI Memo 2001-27. Massachusetts Institute of Tech-
nology, Cambridge, MA.

ACM Transactions on Software Engineering and Methodology, Vol. V, No. N, Article A, Pub. date: January YYYY.

A:36 Mariano M. Moscato et al.

KONSTANTINE ARKOUDAS, SARFRAZ KHURSHID, DARKO MARINOV, AND MARTIN RINARD. 2004. Integrat-
ing model checking and theorem proving for relational reasoning. In Proceedings of the 7th. Conference
on Relational Methods in Computer Science (RelMiCS) - 2nd. International Workshop on Applications
of Kleene Algebra, R. Berghammer and B. Möller, Eds. Lecture Notes in Computer Science, Vol. 3051.
Springer-Verlag, Malente, Germany, 204–213. DOI: http://dx.doi.org/10.1007/978-3-540-24771-5 3

BERNHARD BECKERT, REINER HÄHNLE, AND PETER H. SCHMITT (eds.). 2007. Verification of
Object-Oriented Software: The KeY Approach. Springer-Verlag. DOI: http://dx.doi.org/10.1007/
978-3-540-69061-0

YVES BERTOT AND PIERRE CASTÉRAN. 2004. Interactive Theorem Proving and Program Development —
Coq’Art: The Calculus of Inductive Constructions. EATCS Texts in Theoretical Computer Science. DOI:
http://dx.doi.org/10.1007/978-3-662-07964-5

JASMIN BLANCHETTE AND TOBIAS NIPKOW. 2010. Nitpick: A counterexample generator for higher-order
logic based on a relational model finder. In proceedings of the First International Conference on Inter-
active Theorem Proving (ITP 2010). Lecture Notes in Computer Science, Vol. 6172, Springer, 131–146.
DOI: http://dx.doi.org/10.1007/978-3-642-14052-5 11

EDMUND M. CLARKE, ORNA GRUMBERG and DORON A. PELED. 1999. Model Checking. MIT Press.
LEONARDO DE MOURA, AND NIKOLAJ BJORNER. 2008. Z3: An Efficient SMT Solver. In proceedings of

Tools and Algorithms for the Construction and Analysis of Systems (TACAS) 2008, Lecture Notes
in Computer Science, Vol. 4963, Springer Berlin Heidelberg, 337–340. DOI: http://dx.doi.org/10.1007/
978-3-540-78800-3 24

ABOUBAKR A. EL GHAZI AND MANA TAGHDIRI. 2011. Relational Reasoning via SMT Solving. In proceed-
ings of Formal Methods (FM) 2011, Lecture Notes in Computer Science, Vol. 6664, Springer Berlin
Heidelberg, 133-148. DOI: http://dx.doi.org/10.1007/978-3-642-21437-0 12

MARCELO F. FRIAS. 2002. Fork algebras in algebra, logic and computer science. Advances in logic, Vol. 2.
World Scientific Publishing Co., Singapore. DOI: http://dx.doi.org/10.1142/4899

MARCELO F. FRIAS, ARMANDO M. HAEBERER AND PAULO A. S. VELOSO. 1997. A Finite Axiomatization
for Fork Algebras. Logic Journal of the IGPL, Vol. 5, No. 3 (May 1997) 311–319. DOI: http://dx.doi.org/
10.1093/jigpal/5.3.1

MARCELO F. FRIAS, CARLOS G. LÓPEZ POMBO AND NAZARENO AGUIRRE. 2004. An Equational Calcu-
lus for Alloy. In Proceedings of International Conference on Formal Engineering Methods (ICFEM’04)
Seattle, USA. Lecture Notes in Computer Science, Vol. 3308, Springer Berlin Heidelberg, 162–175. DOI:
http://dx.doi.org/10.1007/978-3-540-30482-1 19

MARCELO F. FRIAS, CARLOS G. LÓPEZ POMBO AND MARIANO M. MOSCATO. 2007. Alloy Analyzer+PVS in
the analysis and verification of Alloy specifications. In proceedings of the 13th. International Conference
on Tools and Algorithms for the Construction and Analysis of Systems (TACAS 2007) Braga, Portugal.
Lecture Notes in Computer Science, Vol. 4424. Springer-Verlag, 587–601. DOI: http://dx.doi.org/10.1007/
978-3-540-71209-1 46

GERHARD GENTZEN. 1935. Untersuchungen über das logische Schließen. Mathematische Zeitschrift,
39:176–210, 405–431, 1935. English translation in MANFRED E. SZABO (Ed.). 1969. The Collected
Papers of Gerhard Gentzen. Studies in Logic and the Foundations of Mathematics, Vol. 55, Elsevier,
68–131. DOI: http://dx.doi.org/10.1016/S0049-237X(08)70822-X

MICHAEL J. C. GORDON. 1989. Mechanizing Programming Logics in Higher Order Logic. In GRA-
HAM BIRTWISTLE AND P. A. SUBRAHMANYAM (Eds.). Current Trends in Hardware Verification
and Automated Theorem Proving, Springer New York, NY, 387–439. DOI: http://dx.doi.org/10.1007/
978-1-4612-3658-0 10

GERARD J. HOLZMANN 2003. The SPIN Model Checker: Primer and Reference Manual (1st. ed.). Addison-
Wesley Professional.

DANIEL JACKSON, ILYA SHLYAKHTER, AND MANU SRIDHARAN. 2001. A micromodularity mechanism. In
Proceedings of the 8th European Software Engineering Conference held together with the 9th ACM
SIGSOFT International Symposium on Foundations of Software Engineering. ACM New York, NY, 62–
73. DOI: http://dx.doi.org/10.1145/503209.503219

DANIEL JACKSON. 2012. Software Abstractions: Logic, Language, and Analysis - Revised version. The MIT
Press. DOI: http://dx.doi.org/10.1007/s10270-012-0259-7

ROGER D. MADDUX. 1991. Pair-Dense Relation Algebras. Transactions of the AMS, Vol. 328, N. 1, 83–131.
DOI: http://dx.doi.org/10.2307/2001878

TODD KAUFMANN, CHRIS MCCONNELL, IVAN VAZQUEZ, MARCO ANTONIOTTI, RICK CAMPBELL, AND
PAOLO AMOROSO. 2000. ILISP User Manual, Retrieved November 2, 2012 from http://library.isr.ist.
utl.pt/docs/ilisp/ilisp toc.html.

ACM Transactions on Software Engineering and Methodology, Vol. V, No. N, Article A, Pub. date: January YYYY.

Dynamite: A Tool for the Verification of Alloy Models Based on PVS A:37

MARIANO M. MOSCATO, CARLOS G. LÓPEZ POMBO, AND MARCELO F. FRIAS. 2010. Dynamite 2.0: New
Features Based on UnSAT-Core Extraction to Improve Verification of Software Requirements. In pro-
ceedings of International Conference on Theoretical Aspects of Computing (ICTAC 2010). Lecture Notes
in Computer Science, Vol. 6255, Springer-Verlag, Berlin, Germany, 275–289. DOI: http://dx.doi.org/10.
1007/978-3-642-14808-8 19

TOBIAS NIPKOW, MARCUS WENZEL, AND LAWRENCE C. PAULSON. 2002. Isabelle/HOL – A proof assistant
for higher-order logic. Lecture Notes in Computer Science, Vol. 2283. Springer-Verlag, Berlin, Germany.
DOI: http://dx.doi.org/10.1007/3-540-45949-9

SAM OWRE. 2008. A brief overview of the PVS user interface, 8th International Workshop User Interfaces
for Theorem Provers (UITP08), Montreal, Canada.

SAM OWRE, NATARAJAN SHANKAR, JOSEPH M. RUSHBY, AND DAVE W. J. STRINGER-CALVERT. 2001. PVS
prover guide, Version 2.4. Computer Science Laboratory, SRI International, Menlo Park, CA.

SAM OWRE, JOSEPH M. RUSHBY, AND NATARAJAN SHANKAR. 1992. PVS: A Prototype Verification Sys-
tem. In Proceedings of the 11th International Conference on Automated Deduction. Lecture Notes in
Artificial Intelligence 607, Springer, 748–752. DOI: http://dx.doi.org/10.1007/3-540-55602-8 217

TAHINA RAMANANANDRO. 2008. Mondex, an electronic purse: specification and refinement checks with the
Alloy model-finding method. Formal Aspects of Computing, 20(1) (January 2008), 21–39. DOI: http:
//dx.doi.org/10.1007/s00165-007-0058-z

EMINA TORLAK, FELIX CHANG, AND DANIEL JACKSON. 2008. Finding Minimal Unsatisfiable Cores of
Declarative Specifications. In Proceedings of 15th International Symposium on Formal Methods, Turku,
Finland, May 26-30. Lecture Notes in Computer Science, Vol. 5014, Springer Berlin Heidelberg, 326–
341. DOI: http://dx.doi.org/10.1007/978-3-540-68237-0 23

MATTIAS ULBRICH, ULRICH GEILMANN, ABOUBAKR A. EL GHAZI, AND MANA TAGHDIRI. 2012. A Proof
Assistant for Alloy Specifications. In Proceedings of Tools and Algorithms for the Construction and
Analysis of Systems (TACAS) 2012, Lecture Notes in Computer Science, Vol. 7214, 422–436, Springer
Berlin Heidelberg. DOI: http://dx.doi.org/10.1007/978-3-642-28756-5 29

PAMELA ZAVE. 2006. Compositional binding in network domains. In Proceedings of 14th International Sym-
posium on Formal Methods, Hamilton, Canada, August 21-27. Lecture Notes in Computer Science,
Vol. 4085, Hamilton, Canada, Springer-Verlag, 332–347. DOI: http://dx.doi.org/10.1007/11813040 23

Received Month Year; revised Month Year; accepted Month Year

ACM Transactions on Software Engineering and Methodology, Vol. V, No. N, Article A, Pub. date: January YYYY.

Online Appendix to:
Dynamite: A Tool for the Verification of Alloy Models Based on PVS

MARIANO M. MOSCATO, Universidad de Buenos Aires (UBA)
CARLOS G. LOPEZ POMBO, Universidad de Buenos Aires (UBA) and CONICET
MARCELO F. FRIAS, Instituto Tecnológico de Buenos Aires (ITBA) and CONICET

In this appendix are contained the proofs of lemmas and theorems of Sec. 3.
Given an Alloy environment, we can characterize those proper PDOCFA that are

candidates to interpret the Alloy environment.

Definition A.1. Let e be an Alloy environment. A proper PDOCFA F is compatible
with environment e if the relational environment eP (as defined in Def. 3.6), is correctly
defined in F.

In Def. A.1, correctly defined means that for each symbol s, e′(s) yields a relation in F.
From the previous definitions, the following lemma can be proved by induction on

the structure of Alloy terms. The lemma, besides being necessary for the proof of in-
terpretability, shows also in what sense the previous constructions can be considered
“canonical”. Notice that both Alloy and relational environments can be homomorphi-
cally extended to functions assigning appropriate values to complex terms built from
the constants of each language. For the sake of simplifying the notation we will use
the same notation for environments and their homomorphic extensions.

LEMMA A.2. Let e be an Alloy environment. Let Fe be a PDOCFA compatible
with environment e according to Def. A.1. Then, for every Alloy term t such that
e(t) ⊆ e(sigi1)× · · · × e(sigik), we have:

eP(T (t)) =

{
{ 〈a, a〉 : a ∈ e(t) } , if k = 1

{ 〈a1, a2 ? · · · ? ak〉 : 〈a1, a2, . . . , ak〉 ∈ e(t) } . if k > 1

PROOF. The proof follows by induction on the structure of the Alloy term t. The
proof is trivial for the constants iden, univ and none. We present detailed proofs for the
cases in which t is an individual variable or t = t1.t2. The other cases are easier.

— if t is the individual variable v:

eP(T (t)) = eP(T (v)) (by Def. t)
= eP(V) (by Def. T)
= { 〈e(v), e(v)〉 } (by Def. 3.6)
= { 〈a, a〉 : a ∈ e(t) } . (by set theory and Def. t)

— if t = t1.t2: Since both the result of the lemma and the definition of • are given
by cases, we will consider 6 different cases depending on k1 (the rank of t1) and k2 (the
rank of t2). Following the typing constraints of Alloy, navigation is not defined when
k1 = k2 = 1.

c© YYYY ACM 1049-331X/YYYY/01-ARTA $15.00
DOI:http://dx.doi.org/10.1145/0000000.0000000

ACM Transactions on Software Engineering and Methodology, Vol. V, No. N, Article A, Pub. date: January YYYY.

App–2 Mariano M. Moscato et al.

— k1 = 1 and k2 = 2 (then, k = 1):

eP(T (t)) = eP(T (t1.t2)) (by Def. t)
= eP(T (t1) • T (t2)) (by Def. T)
= eP(Ran (T (t1).T (t2))) (by Def. •)
= Ran (eP(T (t1)).eP(T (t2))) (by eP homomorphism)
= Ran ({ 〈a, a〉 : a ∈ e(t1) } . { 〈a, b〉 : 〈a, b〉 ∈ e(t2) }) (by Ind. Hyp.)
= Ran ({ 〈a, b〉 : a ∈ e(t1) ∧ 〈a, b〉 ∈ e(t2) }) (by Def.“.”)
= { 〈b, b〉 : ∃a (a ∈ e(t1) ∧ 〈a, b〉 ∈ e(t2)) } (by Def. Ran)
= { 〈b, b〉 : b ∈ e(t1).e(t2) } (by Def. “.”)
= { 〈b, b〉 : b ∈ e(t1.t2) } (by e homomorphism)
= { 〈b, b〉 : b ∈ e(t) } . (by Def. t)

— k1 = 1 and k2 > 2:
Notice that

eP(T (t1)).eP(T (t2))

= { 〈a, a〉 : a ∈ e(t1) }
. { 〈b1, b2 ? · · · ? bk2〉 : 〈b1, b2, . . . , bk2〉 ∈ e(t2) } (by Ind. Hyp.)

= { 〈b1, b2 ? · · · ? bk2〉 : b1 ∈ e(t1) ∧ 〈b1, b2, . . . , bk2〉 ∈ e(t2) } . (by Def.“.”)

Then,

Ran (eP(T (t1)).eP(T (t2)))

= { 〈b2 ? · · · ? bk2 , b2 ? · · · ? bk2〉 : ∃b1 (b1 ∈ e(t1) ∧ 〈b1, b2, . . . , bk2〉 ∈ e(t2)) }
(by Def. Ran)

= { 〈b2 ? · · · ? bk2 , b2 ? · · · ? bk2〉 : 〈b2, . . . , bk2〉 ∈ e(t1).e(t2) } (by Def. “.”)
= { 〈b2 ? · · · ? bk2 , b2 ? · · · ? bk2〉 : 〈b2, . . . , bk2〉 ∈ e(t1.t2) } (by e homo.)
= { 〈b2 ? · · · ? bk2 , b2 ? · · · ? bk2〉 : 〈b2, . . . , bk2〉 ∈ e(t) } . (by Def. t)

From the definitions of π and ρ, we can reason

∼ π.Ran (eP(T (t1)).eP(T (t2))) .ρ

= { 〈b2, b3 ? · · · ? bk2〉 : 〈b2, b3, . . . , bk2〉 ∈ e(t) } . (4)

Joining the previous proofs we obtain:

eP(T (t)) = eP(T (t1.t2)) (by Def. t)
= eP(T (t1) • T (t2)) (by Def. T)
= eP(∼ π.Ran (T (t1).T (t2)) .ρ) (by Def. •)
=∼ π.Ran (eP(T (t1)).eP(T (t2))) .ρ (by eP homomorphism)
= { 〈b2, b3 ? · · · ? bk2〉 : 〈b2, b3, . . . , bk2〉 ∈ e(t) } . (by (4))

ACM Transactions on Software Engineering and Methodology, Vol. V, No. N, Article A, Pub. date: January YYYY.

Dynamite: A Tool for the Verification of Alloy Models Based on PVS App–3

— k1 = 2 and k2 = 1 (then, k = 1):

eP(T (t)) = eP(T (t1.t2)) (by Def. t)
= eP(T (t1) • T (t2)) (by Def. T)
= eP(Dom (T (t1).T (t2))) (by Def. •)
= Dom (eP(T (t1)).eP(T (t2))) (by eP homomorphism)
= Dom ({ 〈a, b〉 : 〈a, b〉 ∈ e(t1) } . { 〈b, b〉 : b ∈ e(t2) }) (by Ind. Hyp.)
= Dom ({ 〈a, b〉 : 〈a, b〉 ∈ e(t1) ∧ b ∈ e(t2) }) (by Def.“.”)
= { 〈a, a〉 : ∃b (〈a, b〉 ∈ e(t1) ∧ b ∈ e(t2)) } (by Def. Dom)
= { 〈a, a〉 : a ∈ e(t1).e(t2) } (by Def. “.”)
= { 〈a, a〉 : a ∈ e(t1.t2) } (by e homomorphism)
= { 〈a, a〉 : a ∈ e(t) } . (by Def. t)

— k1 = 2 and k2 > 1:

eP(T (t)) = eP(T (t1.t2)) (by Def. t)
= eP(T (t1) • T (t2)) (by Def. T)
= eP(T (t1).T (t2)) (by Def. •)
= eP(T (t1)).eP(T (t2)) (by eP homomorphism)
= { 〈a, a1〉 : 〈a, a1〉 ∈ e(t1) }

. { 〈a1, a2 ? · · · ? ak2〉 : 〈a1, a2, . . . , ak2〉 ∈ e(t2) } (by Ind. Hyp.)
= {〈a, a2 ? · · · ? ak2〉 : ∃a1 (〈a, a1〉 ∈ e(t1)

∧ 〈a1, a2, . . . , ak2〉 ∈ e(t2))} (by Def. “.”)
= { 〈a, a2 ? · · · ? ak2〉 : 〈a, a2, . . . , ak2〉 ∈ e(t1).e(t2) } (by Def. “.”)
= { 〈a, a2 ? · · · ? ak2〉 : 〈a, a2, . . . , ak2〉 ∈ e(t1.t2) } (by e homo.)
= { 〈a, a2 ? · · · ? ak2〉 : 〈a, a2, . . . , ak2〉 ∈ e(t) } . (by Def. t)

— k1 > 2 and k2 = 1:

eP(T (t)) = eP(T (t1.t2)) (by Def. t)
= eP(T (t1) • T (t2)) (by Def. T)
= eP (T (t1). (iden⊗ (· · · ⊗ ((iden⊗T (t2)) .π)))) (by Def. •)
= eP(T (t1)). (iden⊗ (· · · ⊗ ((iden⊗eP(T (t2))) .π))) . (by eP homo.)

Notice that

iden⊗eP(T (t2)) = { 〈a ? b, a ? b〉 : 〈b, b〉 ∈ eP(T (t2)) } (by Def. ⊗)
= { 〈a ? b, a ? b〉 : b ∈ e(t2) } . (by Ind. Hyp.)

Then,

(iden⊗eP(T (t2))) .π = { 〈a ? b, a〉 : b ∈ e(t2) } .
Therefore,

iden⊗ (· · · ⊗ (iden⊗eP(T (t2))) .π) =

{ 〈a1 ? · · · ? ak1−3 ? a ? b, a1 ? · · · ? ak1−2 ? a〉 : b ∈ e(t2) } . (5)

By inductive hypothesis,

eP(T (t1)) = { 〈b1, b2 ? · · · ? bk1〉 : 〈b1, b2, . . . , bk1〉 ∈ e(t1) } . (6)

ACM Transactions on Software Engineering and Methodology, Vol. V, No. N, Article A, Pub. date: January YYYY.

App–4 Mariano M. Moscato et al.

From (5) and (6), 〈c1, c2 ? · · · ? ck1−1〉 ∈ eP(T (t)) iff there exists (due to the definition of
composition of binary relations) an object d1 ? · · · ? dk1−1 such that:
— 〈c1, d1 ? · · · ? dk1−1〉 ∈ eP(T (t1)), (or, equivalently, 〈c1, d1, . . . , dk1−1〉 ∈ e(t1)),
— dk1−1 ∈ e(t2), and
— di = ci+1 for 1 ≤ i ≤ k1 − 2.
From the previous conditions,

〈c1, c2 ? · · · ? ck1−1〉 ∈ eP(T (t))

iff ∃dk1−1 (〈c1, c2, . . . , ck1−1, dk1−1〉 ∈ e(t1) and dk1−1 ∈ e(t2))

iff 〈c1, c2, . . . , ck1−1〉 ∈ e(t1) .e(t2)

iff 〈c1, c2, . . . , ck1−1〉 ∈ e(t1 .t2)

iff 〈c1, c2, . . . , ck1−1〉 ∈ e(t) .

Thus, eP(T (t)) = { 〈c1, c2 ? · · · ? ck1−1〉 : 〈c1, c2, . . . , ck1−1〉 ∈ e(t) }.
— k1 > 2 and k2 > 1:

eP(T (t)) = eP(T (t1 .t2)) (by Def. t)
= eP(T (t1) • T (t2)) (by Def. T)
= eP(T (t1)) • eP(T (t2)) . (by eP homo.)
= eP (T (t1). (iden⊗ (· · · ⊗ (iden⊗T (t2))))) (by Def. •)
= eP(T (t1)). (iden⊗ (· · · ⊗ (iden⊗eP(T (t2))))) (by eP homo.)

By inductive hypothesis,

eP(T (t1)) = { 〈a1, a2 ? · · · ? ak1〉 : 〈a1, a2, . . . , ak1〉 ∈ e(t1) } (7)

and

eP(T (t2)) = { 〈b1, b2 ? · · · ? bk2〉 : 〈b1, b2, . . . , bk2〉 ∈ e(t2) } . (8)

From (8) and Def. ⊗,

iden⊗ (· · · ⊗ (iden⊗eP(T (t2))))

= {〈a1 ? · · · ? ak1−2 ? b1, a1 ? · · · ? ak1−2 ? b2 ? · · · ? bk2〉 :

〈b1, b2, . . . , bk2〉 ∈ e(t2)} . (9)

From (7) and (9), 〈c1, c2 ? · · · ? ck1+k2−2〉 ∈ eP(T (t)) iff there exists (due to the definition
of composition of binary relations) d1, . . . , dk1−1 such that:
— 〈c1, d1 ? · · · ? dk1−1〉 ∈ eP(T (t1)) (or, equivalently, 〈c1, d1, . . . , dk1−1〉 ∈ e(t1)),
— 〈dk1−1, ck1 , . . . , ck1+k2−2〉 ∈ e(t2), and
— di = ci+1 for 1 ≤ i ≤ k1 − 2.
From the previous conditions,

〈c1, c2 ? · · · ? ck1+k2−2〉 ∈ e′(T (t))

iff ∃dk1−1 (〈c1, c2, . . . , ck1−1, dk1−1〉 ∈ e(t1)

and 〈dk1−1, ck1 , . . . , ck1+k2−2〉 ∈ e(t2))

iff 〈c1, c2, . . . , ck1+k2−2〉 ∈ e(t1) .e(t2)

iff 〈c1, c2, . . . , ck1+k2−2〉 ∈ e(t1 .t2)

iff 〈c1, c2, . . . , ck1+k2−2〉 ∈ e(t) .

Thus, eP(T (t)) = { 〈c1, c2 ? · · · ? ck1+k2−2〉 : 〈c1, c2, . . . , ck1+k2−2〉 ∈ e(t) }.

ACM Transactions on Software Engineering and Methodology, Vol. V, No. N, Article A, Pub. date: January YYYY.

Dynamite: A Tool for the Verification of Alloy Models Based on PVS App–5

LEMMA A.3. Given a proper PDOCFA F and a relational environment e, the Alloy
environment eA built according to Def. 3.7 satisfies for every Alloy term t with eA(t) ⊆
eA(sigi1)× · · · × eA(sigik):

— if k = 1, eA(t) = { a : 〈a, a〉 ∈ e(T (t)) },
— if k > 1, eA(t) = { 〈a1, a2, . . . , ak〉 : 〈a1, a2 ? · · · ? ak〉 ∈ e(T (t)) }.

PROOF. By Def. 3.7, eA satisfies:

— eA(sigi) =
{
a : 〈a, a〉 ∈ e(idensigi

)
}

,
— eA(R) = { 〈a1, . . . , an〉 : 〈a1, a2 ? · · · ? an〉 ∈ e(R) },
— eA(vi) = a such that e(vi) = { 〈a, a〉 }.

From the definition of eA, e satisfies:

— e(idensigi
) = { 〈a, a〉 : a ∈ eA(sigi) },

— e(R) = { 〈a1, a2 ? · · · ? an〉 : 〈a1, . . . , an〉 ∈ eA(R) },
— e(vi) = { 〈a, a〉 } such that eA(vi) = a.

We now have an Alloy environment eA and a relational environment e that satisfy the
conditions in Def. 3.6. Notice then that F is compatible with the Alloy environment eA.
From Lemma A.2,

— if k = 1, e(T (t)) = { 〈a, a〉 : a ∈ eA(t) },
— if k > 1, e(T (t)) = { 〈a1, a2 ? · · · ? ak〉 : 〈a1, a2, . . . , ak〉 ∈ eA(t) }.

It then follows that

— if k = 1, eA(t) = { a : 〈a, a〉 ∈ e(T (t)) },
— if k > 1, eA(t) = { 〈a1, a2, . . . , ak〉 : 〈a1, a2 ? · · · ? ak〉 ∈ e(T (t)) }.

The following lemma will be used in the proof of Lemma A.5.

LEMMA A.4. Let e be an Alloy environment. Let eP be a relational environment
defined according to Def. 3.6. Let Fe be a PDOCFA compatible with environment e
(c.f. Def. A.1). Let r = { 〈a, a〉 } ⊆ idenS be a point. Let Fe[x 7→a] be a PDOCFA compat-
ible with environment e[x 7→ a]. Then,

Fe |= β [eP[x 7→ r]] iff Fe[x 7→a] |= β [(e[x 7→ a])P]

PROOF. In order to prove the lemma it suffices to show that Fe = Fe[x 7→a] and eP[x 7→
r] = (e[x 7→ a])P. According to Defs. 3.6 and A.1, the construction of algebra Fe does not
depend on the value e assigns to variables. Therefore, it is immediate that Fe = Fe[x7→a].
For all signatures, fields and variables distinct of x, it is clear that eP[x 7→ r] and
(e[x 7→ a])P agree. For variable x we have:

eP[x 7→ r](x) = r = { 〈a, a〉 } .

Similarly, by Def. 3.6,

(e[x 7→ a])P(x) = { 〈e[x 7→ a](x), e[x 7→ a](x)〉 } = { 〈a, a〉 } .

LEMMA A.5. Let e be an Alloy environment. Let eP be defined according to Def. 3.6.
Let F be a PDOCFA compatible with environment e (c.f. Def. A.1). Then,

|= ϕ[e] ⇐⇒ F |= F (ϕ)[eP] .

ACM Transactions on Software Engineering and Methodology, Vol. V, No. N, Article A, Pub. date: January YYYY.

App–6 Mariano M. Moscato et al.

PROOF. The proof proceeds by induction on the structure of the Alloy formula ϕ. We
will concentrate on formulas built from atomic formulas (inclusions) and existential
quantification. The other cases are easier.

— ϕ = t1 in t2:
For ϕ to be well-formed, t1 and t2 must stand for relations of the same arity.

F |= F (t1 in t2)[eP]

iff F |= T (t1) in T (t2)[eP] (by Def. 3.8)
iff eP(T (t1)) ⊆ eP(T (t2)) . (by Def. of |=)

There are now two possibilities, namely, either both t1, t2 have arity 1, or they both
have arity k > 2. Let us continue the proof for the unary case, being the remaining
case similar. We then have

eP(T (t1)) ⊆ eP(T (t2))

iff { 〈a, a〉 : a ∈ e(t1) } ⊆ { 〈a, a〉 : a ∈ e(t2) } (by Lemma A.2)
iff e(t1) ⊆ e(t2) (by set-theory)
iff |= t1 in t2[e] . (by Def. of |=)

— ϕ = some x : S | α:

F |= F (some x : S | α)[eP]

iff F |= some x : S | F (α)[eP] (by Def. 3.8)
iff F |= some x | Point(x) && x in idenS && F (α)[eP] (by abbreviation)
iff there exists r such that:

F |= Point(x) [eP[x 7→ r]] and
F |= x in idenS [eP[x 7→ r]] and
F |= F (α) [eP[x 7→ r]] . (by Def. |=)

Since r is a point in idenS , let us assume r = { 〈a, a〉 } (for a ∈ S). Notice that algebra
F does not depend on the value e assigns to variables. Thus, F is also compatible with
environment e[x 7→ a]. Moreover, from the proof of Lemma A.4, (e[x 7→ a])P = eP[x 7→ r].
Thus,

there exists r such that:
F |= Point(x) [eP[x 7→ r]] and
F |= x in idenS [eP[x 7→ r]] and
F |= F (α) [eP[x 7→ r]] (by Def. |=)

iff there exists a ∈ S such that
F |= F (α) [(e[x 7→ a])P] (by previous comment)

iff there exists a ∈ S such that
|= α [e[x 7→ a]] (by inductive hypothesis)

iff |= some x : S | α [e] . (by Def. |=)

LEMMA A.6. Let F be a proper PDOCFA. Let e be a relational environment. Then,
there exists an Alloy environment eA built according to Def. 3.7 such that for every Alloy
formula ϕ,

F |= F (ϕ)[e] ⇐⇒ |= ϕ[eA] .

ACM Transactions on Software Engineering and Methodology, Vol. V, No. N, Article A, Pub. date: January YYYY.

Dynamite: A Tool for the Verification of Alloy Models Based on PVS App–7

PROOF. The proof proceeds by induction on the structure of formula ϕ.

— ϕ = t1 in t2:

F |= F (t1 in t2)[e] ⇐⇒ F |= T (t1) in T (t2)[e] (by Def. 3.8)
⇐⇒ e(T (t1)) ⊆ e(T (t2)) (by Def. |=)
⇐⇒ eA(t1) ⊆ eA(t2) (by Lemma A.3)
⇐⇒ |= t1 in t2[eA] . (by Def. |=)

The remaining parts of the proof follow a structure similar to that of the proof of
Lemma A.5.

LEMMA A.7. Given an Alloy environment e, there exists a proper PDOCFA F com-
patible with e.

PROOF. Assume the Alloy model declares the signatures Sig1,Sig2, · · · ,SigI . Let
A =

⋃
1≤j≤I e(Sigj). Let Tree(A) be the smallest set satisfying the following conditions:

—A ⊆ Tree(A), and
— Tree(A)× Tree(A) ⊆ Tree(A).

Tree(A) describes finite binary trees with data from A in the leaves. For instance,
element 〈a0, 〈a1, 〈〈a2, a3〉 , 〈a4, a5〉〉〉〉 ∈ Tree(A) describes the tree

•
�
a0

@•
�
a1

@•
�•

� @
a2 a3

@•
� @
a4 a5

Let us consider the PDOCFA F with universe10 Pw(Tree(A) × Tree(A)). All the oper-
ators but fork have their standard set-theoretical meaning. For fork we define

R∇S = { 〈a, 〈b, c〉〉 : 〈a, b〉 ∈ R && 〈a, c〉 ∈ S } .
In order to prove compatibility we must show that signatures and fields defined in

the Alloy model are given appropriate values according to environment eP. For sig-
nature Sigj (1 ≤ j ≤ I), eP(Sigj) = idenSigj

, which clearly belongs to Pw(Tree(A) ×
Tree(A)). For a field F declared as

sig S { F : S1->...->Sk }

the relation eP(F) defined as

{〈s0, s1 ? · · · ? sk〉 :

s0 ∈ S && s1 ∈ S1 && · · ·&& sk ∈ Sk && 〈s0, s1, . . . , sk〉 ∈ e(F)}
belongs to Pw(Tree(A)× Tree(A)) provided a ? b is defined as 〈a, b〉.

10We denote by Pw(X) the power set of set X.

ACM Transactions on Software Engineering and Methodology, Vol. V, No. N, Article A, Pub. date: January YYYY.

