
Alloy Analyzer+PVS in the Analysis and

Verification of Alloy Specifications

Marcelo F. Frias?, Carlos G. Lopez Pombo, and Mariano M. Moscato

Department of Computer Science, FCEyN,
Universidad de Buenos Aires and CONICET.

e-mail: {mfrias, clpombo, mmoscato}@dc.uba.ar

Abstract. This article contains two main contributions. On the the-
oretical side, it presents a novel complete proof calculus for Alloy. On
the applied side we present Dynamite, a tool that combines the semi-
automatic theorem prover PVS with the Alloy Analyzer. Dynamite al-
lows one to prove an Alloy assertion from an Alloy specification using
PVS, while using the Alloy Analyzer for the automated analysis of hy-
potheses introduced during the proof process. As a means to assess the
usability of the tool, we present a complex case-study based on Zave’s
Alloy model of addressing for interoperating networks.

1 Introduction

Alloy [6] is a formal modeling language with a simple syntax based on notations
ubiquitous in object orientation, and semantics based on relations. Part of its
appeal comes from the existence of the Alloy Analyzer, which allows one to
analyze Alloy specifications in a fully automatic way. The analysis process relies
on a translation of Alloy specifications (where domains are bounded to finite
sizes) to a propositional formula, which is then analyzed using o↵-the-shelf SAT-
solvers. Bounding the size of domains has a direct impact on the conclusions we
can draw from the analysis process. If a counterexample for a given assertion is
found, then the model is for sure flawed. On the other hand, if no counterexample
is found, we can only conclude that no counterexamples exist when domain sizes
are constrained to the given bounds. Choosing larger bounds may show the
existence of previously unforeseen errors. This limited analyzability o↵ered by
the Alloy Analyzer is essential in order to analyze Alloy models and get rid of
most errors introduced in the modeling process. At the same time, models for
critical applications can also benefit from usage of the Alloy Analyzer, but one
cannot entirely rely on that.

Lightweight formal methods with the limitations of the Alloy Analyzer cannot
be entirely trusted when dealing with critical models. An alternative is the use of
heavyweight formal methods, as for instance semi-automatic theorem provers,
and among these, PVS [9]. Theorem provers have limitations too. First, they
? A preliminary version of this paper will be presented at the First Alloy Workshop,

colocated with 14th ACM Symposium on Foundations of Software Engineering, 2006.

require an expertise from the user that many times discourages their use. Also,
theorem provers use their own languages which are seldom close to lightweight
modeling languages. This detracts from their usability by lightweight users, and
is also a source of errors in case lightweight models have to be translated. Equally
important, minor errors in a model may require to redo proofs that were using
wrong hypotheses. Much the same as errors overlooked during software require-
ment elicitation have a greater impact the more advanced the development stage,
model errors have greater impact the more auxiliary lemmas have been proved.
Therefore, getting rid of as many errors as possible from the model before start-
ing the theorem proving process is a must.

The previous paragraphs show that a marriage between simple automatically
analyzable formal modeling languages and semiautomatic theorem provers is in
fact necessary when analyzing critical models. The goal of this paper is to present
Dynamite, a tool that marries Alloy and PVS.

Dynamite is an extension of PVS that incorporates the following features:

1. Sound automatic translation of Alloy models to PVS, preventing the intro-
duction of errors in the translation process.

2. Novel complete proof calculus for Alloy. Therefore, valid Alloy properties
can be proved (although this requires interaction with the user).

3. Modified PVS pretty-printer that shows proof steps in Alloy language (thus
bridging the gap between Alloy and PVS).

4. Fluid automatic interaction with the Alloy Analyzer in order to automati-
cally analyze hypotheses introduced during the theorem proving process.

The contributions of this paper are the following:

1. We present a novel complete calculus for Alloy by interpreting Alloy theories
to fork algebra [3] theories.

2. We present Dynamite, the tool that incorporates the previously enumerated
features.

3. We give a brief description of a case study where we prove several assertions
introduced in Zave’s Alloy model of addressing for interoperating networks
[11], and present some conclusions regarding the usability and limitations of
Dynamite.

The article is organized as follows. In Section 2 we present the Alloy modeling
language by means of an example, as well as its supporting tool, the Alloy
Analyzer. In Section 3 we present the complete calculus for Alloy. In Section 4
we describe our tool, Dynamite. In Section 5 we discuss a complex case-study.
Finally, in Section 6 we discuss related work, conclusions about the contributions
of this article, and some proposals for further work.

2 Alloy and the Alloy Analyzer

In this section we introduce the Alloy modeling language by means of an ex-
ample. In [11] Zave presents a formal model of addressing for interoperating

networks. These networks connect agents (which might be hardware devices or
other software systems). Agents can be divided between client agents (users
of the networking infrastructure), or server agents (part of the infrastructure).
Agents can use resources from domains, to which they must be attached. In order
to be able to reach clients from domains, pairs haddress, domaini are assigned
to clients. Di↵erent sorts of objects can be distinguished in the previous descrip-
tion. Signatures (akin to classes in object orientation), are the means to declare
object domains. Figure 1 presents a (simplfied1) description of the signatures for
this model.

sig Address{ }

sig Agent{ attachments: set Domain }

sig Server extends Agent { }

sig Client extends Agent { knownAt: Address -> Domain }

sig Domain{ space: set Address, map: space -> Agent }

Fig. 1. Simplified model for addresses, agents and domains.

Signature Address denotes a unary relation (set) whose objects are atomic.
According to Alloy’s formal semantics, signature Agent declares a set of ob-
jects Agent , and field attachments denotes a binary relation attachments ✓
Agent⇥Domain (where Domain is the set denoted by signature Domain). Notice
that without the modifier set in the declaration of field attachments, relation
attachments would instead be a total function. Signature extension allows us
to model single inheritance between signatures. Signature Server singles out
some agents as servers. Signature Client, besides distinguishing some agents
as clients, introduces a new field. Field knownAt allows us to retrieve the pairs
haddress, domaini mentioned above. Following Alloy’s semantics, field knownAt
denotes a ternary relation knownAt ✓ Client ⇥Address ⇥Domain.

Axioms are included in a model under the form of facts. Recalling that dot
(.) stands for composition of relations (called navigation in Alloy), an axiom
saying that “whenever an agent appears in the range of the map attribute it is
because the agent is attached to that domain”, is written in Alloy as:

fact { all d: Domain, g: Agent |

g in Address.(d.map) => d in g.attachments }

Besides navigation, the relational logic underlying Alloy [6] includes opera-
tions for union of relations (+), intersection (&), di↵erence (�), transposition
(which flips pairs hx, yi of a binary relation to hy, xi and is denoted by ⇠) and
reflexive-transitive closure (⇤). Also, iden denotes the binary identity relation,
and univ denotes the unary universal relation (the set holding the union of all
the domains from the model).

1 The complete Alloy model can be obtained from
http://www.research.att.com/⇠pamela/svcrte.html.

Once a model has been provided, it can be analyzed by looking for counterex-
amples of properties that are expected to hold in the model. These properties
are called assertions. For instance, the (not necessarily valid) assertion that the
map field targets only client agents, is written in Alloy as:

assert mapTargetsClients { all d:Domain, s:d.space |

s.(d.map) in Client }

Command check mapTargetsClients for 5 allows one to search for coun-
terexamples in which domains have up to 5 elements, using the Alloy Analyzer.
The Alloy Analyzer translates the model and the negation of the assertion to a
propositional formula. Of course, the translation heavily depends on the bounds
declared in the check command. Once a propositional formula has been obtained,
the Alloy Analyzer employs o↵-the-shelf SAT-solvers, and in case a model of the
formula is obtained, it is translated back to a counterexample of the source model
and presented to the user using di↵erent visualization algorithms.

3 A Novel Complete Calculus for Alloy

Among the extensions of PVS included in Dynamite, an essential one is the
inclusion of a complete calculus for Alloy. The calculus is obtained by translating
Alloy theories (specifications) to fork algebraic theories (to be introduced in
Section 3.1). Since:

1. the translation is semantics-preserving, and
2. there is a complete calculus for the fork algebras we will use in this article,

we will prove a theorem stating that an assertion ↵ (semantically) follows from
an Alloy specification ⌃ if (and only if) its translation T (↵) can be proved from
the translation of the theory using the complete calculus for fork algebras. In
symbols, ⌃ |= ↵ () {T (�) : � 2 ⌃ } ` T (↵). This kind of theorems relating
two logics are often called interpretation theorems.

The following question is now likely to arise:

Is the fork algebra language substantially di↵erent from the Alloy lan-

guage (therefore reducing the usability of the proposed calculus by current

Alloy users)?

This section is then structured as follows. In Section 3.1 we introduce the
class of point-dense omega closure fork algebras (also noted as PDOCFA), as
well as their complete calculus. In Section 3.2 we present the translation from
Alloy formulas to formulas in the language of PDOCFA, and provide a proof
sketch of the interpretation theorem. Since we aim at defining a translation that
yields algebraic formulas as close to Alloy formulas as possible, in Section 3.3
we give an answer to the previous question and analyze the similarities and
di↵erences between the Alloy language and the fork algebraic language.

3.1 Point-Dense Omega Closure Fork Algebras

Proper Point-Dense Omega Closure Fork Algebras These algebras are
structures whose domain is a set of binary relations built on top of a base set B.
If we call R the domain of such an algebra (notice that R ✓ Pw (B ⇥B)), R has
to be closed under the following operations for sets: union (+), intersection (&),
complement (denoted, for a binary relation r, by r), the empty binary relation
(;), and the universal binary relation, (usually B ⇥B, and denoted by 1).

Besides the previous operations for sets, R has to be closed under the fol-
lowing operations for binary relations: transposition (⇠), navigation (.), and
reflexive–transitive closure (⇤). The identity relation (on B), is denoted by iden.

A binary operation called fork (r) is included, which requires set B to be
closed under an injective function ?. This means that there are elements x in B

that are the result of applying the function ? to elements y and z (i.e., x = y?z).
Since ? is injective, x can be seen as an encoding of the pair hy, zi. Those elements
that do not encode pairs, are called urelements. Operation fork is defined by:

rrs = { ha, b ? ci : ha, bi 2 r and ha, ci 2 s } .

Finally, we require set R to be point-dense. A point is a relation of the
form { ha, ai }. Point-density requires set R to have plenty of these relations.
More formally speaking, for each nonempty relation I contained in the identity
relation there must be a point p 2 R satisfying p ✓ I.

A Complete Calculus for Point-Dense Omega Closure Fork Agebras
Introducing a calculus requires presenting its axioms and inference rules. Before
doing so, we introduce some notation. In a proper PDOCFA the relations ⇡

and ⇢ defined by ⇡ =⇠ (idenr1) and ⇢ =⇠ (1riden) behave as projections
with respect to the encoding of pairs induced by the injective function ?. Their
semantics in a proper PDOCFA A whose binary relations range over a set B, is
given by ⇡ = { ha ? b, ai : a, b 2 B }, ⇢ = { ha ? b, bi : a, b 2 B }.

The operation cross (⌦) performs a parallel product. Its set-theoretical def-
inition is given by r⌦s = { ha ? c, b ? di : ha, bi 2 r and hc, di 2 s }. In algebraic
terms, operation cross is defined by r⌦s = (⇡ .r)r (⇢.s).

We can characterize points as nonempty relations that satisfy the property
x.1.x ✓ iden. If we denote the inclusion relation by “in” (as in Alloy), the pred-
icate “Point” defined by “Point(p) () p != ; && p.1.p in iden” determines
those relations that are points. The axioms and inference rules for the calculus
are then:

1. Axioms for Boolean algebras defining the meaning of +, &, –, ; and 1.
2. Formulas defining composition of binary relations, transposition, reflexive–

transitive closure and the identity relation:
x. (y .z) = (x.y) .z,

x.iden = iden .x = x,

(x.y) &z = ; i↵ (z . ⇠ y) &x = ; i↵ (⇠ x.z) &y = ;,
⇤x = iden + (x. ⇤ x) ,

⇤x.y .1 in (y .1) +
�
⇤x.(y .1 & (x.y .1))

�
.

3. Formulas defining the operator r :
xry = (x. ⇠ ⇡) & (y . ⇠ ⇢) ,

(xry) . ⇠ (wrz) = (x. ⇠ w) & (y . ⇠ z) ,

⇡r⇢ in iden.

4. A formula enforcing point-density:
all x | (x != ; && x in iden) => (some p | Point(p) && p in x) ,

5. Term 1. (1r1) & iden (to be abbreviated as idenU) defines a partial identity
on the set of urelements. Then, the following formula forces the existence of
a nonempty set of urelements:
1.idenU .1 = 1

The inference rules for the closure fork calculus are those for classical first-
order logic (choose you favorite ones), plus the following equational (but infini-
tary) proof rule for reflexive-transitive closure2:

` iden in y x

i in y ` x

i+1 in y (⌦ Rule)

` ⇤x in y

The axioms and rules given above define a class of models. Proper PDOCFA
satisfy the axioms [4], and therefore belong to this class. It could be the case
that there are models for the axioms that are not proper PDOCFA. Fortunately,
the following theorem (which follows from [4], [3, Thm. 4.2], [8, Thm. 52]), states
that if a model is not a proper PDOCFA then it is isomorphic to one.

Theorem 1. Every PDOCFA A is isomorphic to a proper PDOCFA B. More-

over, there exist relations { ha
0

, a

0

i } , . . . , { hai, aii } . . . (possibly infinitely many

of them) that belong to B, such that iden = { ha
0

, a

0

i , . . . , hai, aii , . . . }.

Constraining Quantifiers to Atoms Alloy quantifiers range over relations
of the form { a }, i.e., over unary singletons. On the other hand, relational quan-
tifiers range over the elements of a PDOCFA, which are not even required to be
relations (recall that PDOCFAs are just models of a set of axioms). But, since
PDOCFAs are all isomorphic to proper ones, a relational quantifier can always
be seen as ranging over all binary relations from a proper PDOCFA. Still a big
distance remains between unary singletons and arbitrary binary relations. It is
at least obvious that there are many more of the latter, than there are of the
former. Point-density, by forcing the existence of all singletons, allows us to es-
tablish a one-one correspondence between { a } and { ha, ai }. Therefore, we will
mimic the behavior of Alloy quantifiers by constraining relational quantifiers to
range over points. Notice that some points hold urelements, but others do not.
In this case, since Alloy atoms do not have structure (the structure is modeled
through fields), we will employ points holding urelements.

We will now consider the restricted part of the first-order language of PDOCFAs
defined by the following grammar:
2 Given i > 0, by x

i we denote the relation inductively defined as follows: x

1 = x, and
x

i+1 = x.x

i.

F ::= Equation | !F | F1 || F2 | F1 && F2 |
::= all p / (Point(p) && p in idenU) implies F

Actually, in a PDOCFA we will have di↵erent sub relations of idenU, namely
iden

1

, . . . , idenk, representing each one a di↵erent Alloy signature sig
1

, . . . , sigk.
We will then use the following abbreviated notation for formulas. The formula
“all p | (Point(p) && p in ideni) implies F” is denoted as “all p : sigi | F”.
Similar abbreviations are used for the “some” quantifier.

3.2 A Complete Calculus for Alloy

In this section we introduce a mapping from Alloy formulas to formulas in the
language defined in Section 3.1. The mapping keeps the structure of Alloy for-
mulas almost unchanged, thus simplifying the understanding of the resulting
formulas by casual Alloy users. Since PDOCFAs only contain binary relations,
we will show how to model relations of arbitrary rank as binary ones, with the
aid of fork. We then prove that the resulting calculus is complete for Alloy.

Handling Relations of Rank Greater Than Two Recall that due to the
fork operator, the underlying domain of a proper PDOCFA is closed under an
injective operation ?. Given a n-ary relation R ✓ A

1

⇥ · · ·⇥An, we will represent
it by the binary relation

{ ha
1

, a

2

? · · · ? ani : ha
1

, . . . , ani 2 R } .

This will be an invariant in the representation of n-ary relations by binary ones.
For instance, ternary relation knownAt is encoded as a binary relation knownAt
whose elements are pairs of the form hc, a ? di for c : Client , a : Address and
d : Domain. We will in general denote the encoding of a relation C as a binary
relation, by C. Given a point c : Client , the navigation of the relation knownAt
through c should result in a binary relation contained in Address ⇥ Domain.
Given a point a : t and a binary relation R encoding a relation of rank higher
than 2, we define the navigation operation • by

a • R =⇠ ⇡ .Ran (a.R) .⇢ . (1)

Operation Ran in (1) returns the range of a relation as a partial identity. It
is defined by Ran (x) = (x.1) &iden. Its semantics in terms of binary relations
is given by Ran (R) = { ha, ai : some b | hb, ai 2 R }.

For a binary relation R representing a relation of rank less than or equal to
2, navigation is easier. Given a point a : t, we define

a • R = Ran (a.R) .

It still remains to define navigation whenever the relation on the left-hand side
is not a point, i.e., it has rank greater than 1. The definition is as follows:

R • S =

(
R. (iden⌦ (iden⌦ (· · · ⌦ ((iden⌦S) .⇡)))) if rank(S) = 1
R. (iden⌦ (iden⌦ (· · · ⌦ (iden⌦S)))) if rank(S) > 1

Going back to our example about agents, it is easy to check that for a point
c

0 : Client such that c

0 = { hc, ci },

c

0 • knownAt = {ha, di : a 2 Address, d 2 Domain and hc, a ? di 2 knownAt} .

Translating Alloy Formulas to Relational Formulas In this section we
present a translation of Alloy formulas to formulas in the language of PDOCFAs.
Prior to that, it is necessary to translate Alloy terms to fork-algebra terms.

T (C) = C, T (r+s) = T (r) + T (s),
T (xi) = Xi, (Xi variable ranging over points) T (r&s) = T (r)&T (s),
T (⇠ r) = ⇠ T (r), T (r � s) = T (r)&T (s),
T (⇤r) = ⇤T (r), T (r.s) = T (r) • T (s)

We are now in the right conditions for translating formulas. The translation
di↵ers from the one previously presented in [5] in that the target of the transla-
tion is a first-order language rather than an equational language, and therefore
it is no longer necessary to encode quantified variables because these are kept
explicit. This will greatly improve the understandability of the translation by a
casual Alloy user.

F (t
1

in t

2

) = T (t
1

) in T (t
2

), F (↵ && �) = F (↵) && F (�),
F (!↵) = !F (↵), F (all x : S | ↵) = all x : S | F (↵),
F (↵ || �) = F (↵) || F (�), F (some x : S | ↵) = some x : S | F (↵).

Recall that quantifications in the right-hand side are abbreviations for formulas
where quantifiers range over points of the appropriate signature. Notice that
formulas are undistinguishable from Alloy formulas.

Completeness of the Alloy Calculus Formal semantics of Alloy assigns se-
mantics to expressions and formulas in a given environment. An environment
is a function that assigns sets to signatures, adequate relations to relational
constants (those arising from signature fields), and values to variables over indi-
viduals. From an Alloy environment e we build a PDOCFA Fe and a relational
environment e

0 as follows:

– Let sig
1

, . . . , sigk be the Alloy signatures. Let A =
S

1ik e (sigi). Let T(A)
be the set of finite binary trees with information in the leaves, and whose
information are elements from A.

– Let Fe be the omega closure fork algebra with universe Pw (T(A)⇥ T(A)). If
we denote the tree constructors by: leaf : A ! T(A) and bin : T(A)⇥T(A) !
T(A), the fork operation is defined by

RrS = { ha, bin(b, c)i : ha, bi 2 R ^ ha, ci 2 S } .

Notice that the remaining operations have their meaning fixed once the
domain Pw (T(A)⇥ T(A)) is fixed.

– Let e

0 be the environment satisfying:
• e

0(sigi) =
�

p 2 Fe : Point(p) ^ p idene(sigi)

,

• e

0(R) = R (the binary encoding of relation e(R)),
• e

0(vi) = { he(vi), e(vi)i }.

Similarly, given a proper PDOCFA, and a relational environment e, we define
an Alloy environment e

0 as follows:

– e

0(sigi) =
�

a : ha, ai 2 iden

sigi

,

– e

0(R) = { ha
1

, . . . , ani : ha
1

, a

2

? · · · ? ani 2 e(R) },
– e

0(vi) = a such that e(vi) = { ha, ai }.

From the previous definitions, the following lemmata can be proved by in-
duction on the structure of Alloy formulas. The proofs are not included due to
the lack of space, but follow the lines of previous interpretability results by the
authors [3, 5].

Lemma 1. Given an Alloy environment e, |= '[e] () Fe |= F (')[e0].

Lemma 2. Given a PDOCFA F and a relational environment e, there exists an

Alloy environment e

0
such that for every Alloy formula ', F |= F (')[e] () |=

'[e0].

We then prove the following completeness theorem. The turnstile symbol `
stands for derivability in the calculus for PDOCFAs.

Theorem 2. Let ⌃ [{' } be a set of Alloy formulas. Then,

⌃ |= ' () {F (�) : � 2 ⌃ } ` F (').

Proof. =)) If {F (�) : � 2 ⌃ } 0 F ('), then there exists a PDOCFA F such that
F |= {F (�) : � 2 ⌃ } and F 6|= F ('). From Thm. 1 there exists a proper PDOCFA
F0 isomorphic to F. Clearly, F0 |= {F (�) : � 2 ⌃ } and F0 6|= F ('). Then, there is
a relational environment e such that F0 |= {F (�) : � 2 ⌃ } [e] and F0 6|= F (')[e].
From Lemma 2, there exists an Alloy environment e

0 such that |= ⌃[e0] and
6|= '[e0]. Thus, ⌃ 6|= '.
(=) If ⌃ 6|= ', then there exists an Alloy environment e such that |= ⌃[e]
and 6|= '[e]. From Lemma 1 there exist a proper PDOCFA Fe and a relational
environment e

0 such that Fe |= {F (�) : � 2 ⌃ } [e0] and Fe 6|= F (')[e0]. Then,
{F (�) : � 2 ⌃ } 0 F (').

3.3 Comparing the Source and Target Formalisms

If the calculus introduced in Section 3.2 is to be used by Alloy users, then the
language should be as close as possible to Alloy. The translation of formulas
shows that the formulas result of applying the translation (we are not discussing
terms yet) are indeed Alloy formulas. It is clear that Alloy operations have a
direct algebraic counterpart. Thus, from a syntactical point of view, terms result
of the translation are also Alloy terms. There are a few points that need to be
addressed, though. Namely:

1. Atoms (which in Alloy are modeled as unary singletons { a }) are modeled
in the algebraic setting as singleton binary relations { ha, ai }.

2. More generally, relations that may have rank greater than 2 in Alloy, are
modeled in the algebraic setting as binary relations.

In our experience it is seldom the case that two relations having rank greater
than 2 are composed. The most common situation arises when an atom is com-
posed with a relation of higher rank (a.R). We provide in Dynamite a theory for
fork algebras that includes proofs of the usual properties of composition, as for
instance

all R,S, T | R in S implies (R • T in S • T) && (T • R in T • S) monotonicity
all R,S, T | !Set(S) implies (R • S) • T = R • (S • T) associativity

Proving these properties requires using the full power of the calculus, in-
cluding quantifications over relations, which cannot even be expressed in Alloy.
These are part of the infrastructure provided by Dynamite. A user can prove par-
ticular instances of (for example) monotonicity with respect to fields F

1

, F

2

, F

3

(provided by the Alloy model) by instantiating the previous properties. She can
also prove the property from scratch for the particular instances using Dynamite.

4 The Dynamite Tool

PVS [9] interacts with its users through the highly customizable text editor
EMACS. Dynamite is a tool developed by customizing both EMACS and PVS. In
Sections 4.1 and 4.2 we describe these customizations. In Section 4.3 we describe
the proof process a user would go through, showing how these adaptations make
the proof process more amenable.

4.1 Customizations Made on EMACS

EMACS is a highly customizable text editor. It is possible to run other appli-
cations from within EMACS. It is now possible to run the Alloy Analyzer on
a specific model in order to analyze a provided assertion. While the standard
scope for domains is 3, it is also possible for the user to choose new scopes. This
is extremely useful when adding lemmas whose proof has not yet been devel-
oped, to a theory. The new lemma can be checked within the theory both for
counterexamples and consistency with the aid of the Alloy Analyzer. Once PVS
has been started, it is possible to choose an Alloy model (a .als file) and an
extension of EMACS allows one to translate the Alloy model to an appropriate
PVS theory.

4.2 Customizations Made on PVS

PVS reads theories and shows proofs in its specific syntax. Even properties
written in Alloy, if one wants to prove them with the support of PVS, have to

be rewritten using the syntax PVS recognizes. We have modified the PVS pretty
printer in order to exhibit formulas using Alloy syntax. This will be shown with
an example in Section 5.

The PVS rule “case”, which allows one to introduce new hypotheses along
a proof, has also been modified. According to [9], if the current sequent is of
the form � ` � , then the rule “(case A)” generates the subgoals A,� ` � and
� ` A,�. The rule allows to use formula A as an extra hypothesis along the proof
of �, which has to be discharged later through a proof. Executing the modified
rule “case”, besides performing its regular duty of generating the appropriate
subgoals, also automatically analyzes formula A using the Alloy Analyzer.

4.3 A Proof Scenario

A development team has built an Alloy model for a critical domain, and has
already debugged it by automatically analyzing (using the Alloy Analyzer) some
appropriate assertions. Since the model will serve as a basis for the development
of a critical system, bounded analysis is not enough. The team then faces the
need to prove a given property about their model. Upon starting Dynamite, they
choose to upload the Alloy model. This generates (although they do not need
to know about it), the corresponding PVS theory, and the user can choose an
assertion to prove. Facts from the model are now available as axioms to be used
in proofs.

The proof then proceeds until a new hypothesis has to be introduced using
the PVS command “case”, in whose case the Alloy Analyzer is lunched in the
background in order to check the hypothesis for counterexamples and consis-
tency. If a new lemma has to be added to the theory, then the Alloy Analyzer
can be used from within the framework in order to check for the existence of
counterexamples and for consistency, too.

5 A Case Study: A Formal Model of Addressing for

Interoperating Networks

In her paper [11], Zave presents a formal model of addressing for interoperating
networks. Part of the model is presented in Fig. 1. Domains can create persistent
connections between agents. Such connections are called hops. Besides the do-
main that created it, a hop contains information about the initiator and acceptor
agents taking part in the connection, and also source and target addresses. A
fact forces these addresses to correspond to the agents (according to the domain
map).

sig Hop{ domain: Domain,

initiator, acceptor: Agent,

source, target: Address }

Multi-hop connections are enabled by the servers. These connections are
called links. Links contain information about the server enabling the connection,
and about the connected hops.

abstract sig End { }

one sig Init, Accept extends End { }

sig Link{ agent:Server, oneHop,anotherHop:Hop, oneEnd,anotherEnd:End }

{ oneHop != anotherHop

oneEnd in Init => agent=oneHop.initiator

oneEnd in Accept => agent=oneHop.acceptor

anotherEnd in Init => agent=anotherHop.initiator

anotherEnd in Accept => agent=anotherHop.acceptor }

The reflexive-transitive closure of the accessibility relation determined by
links is kept by an object “Connections”, which also keeps the relation estab-
lished by the links.

one sig Connections{ atomConnected, connected: Hop -> Hop }

Interoperation is considered a feature of networks. Features are installed in
domains and have a set of servers from that domain that implement them.
Among the facts related to features, we find that each feature has at least one
server, and that each server implements exactly one feature.

abstract sig Feature { domain: Domain, servers: set Server }

Interoperation features are then characterized as follows:

sig InteropFeature extends Feature{

toDomain: Domain,

exported, imported, remote, local: set Address,

interTrans: exported some -> some imported }

{ domain != toDomain

exported in domain.space && remote in exported

imported in toDomain.space && local in imported

remote.interTrans = local }

An interoperation feature translates addresses (through relation interTrans)
between di↵erent domains. This is necessary because whenever a client from the
feature’s domain wishes to connect to a client attached to a di↵erent domain,
it must have a target address it can use in its own domain space. Of course,
the target client must have an address in each domain from which it is to be
reached. Di↵erent facts are introduced in [11] in order to fully understand an
interoperation feature behavior, and the following assertions are singled out:

– ConnectedIsEquivalence, asserting that field connected is indeed an equiv-
alence relation (reflexive, symmetric and transitive).

– UnidirectionalChains, asserting that two hops are connected through a
link in an ordered manner (one can be identified as initiator and the other
one as acceptor).

– Reachability, asserting that whenever a client c publishes an address a in
a domain d (ha, di 2 c.knownAt), clients c

0 from domain d can e↵ectively
connect to c.

– Returnability, asserting that if a client c accepted a connection from an-
other client c

0, then a hop from c can be extended to a complete connection
to client c

0.

The Alloy description of the previous assertions is given in the Appendix due to
the lack of space. We proved these properties from the Alloy model using Dyna-
mite. Without using the modified pretty printer from PVS, the PVS specification
of the returnability predicate looks like this:

FAL_Returnability :

|-------
{1} FORALL (hDm: (hop_domain), fDm: (feature_domain),

tDm: (toDomain), tar: (target), rem: (remote),
aCn: (atomConnected), con: (connected), oHp: (oneHop),
aHp: (anotherHop), rBy: (reachedBy), map: (map),
acc: (acceptor), srv: (servers), exp: (exported),
imp: (imported), loc: (local), iTr: (interTrans),
spc: (space), agn: (agent), oEd: (oneEnd),
aEd: (anotherEnd), ini: (initiator),
att: (attachments), src: (source)):

FORALL (g1, g2: (Client), h1, h2, h3: (Hop)):
Navigation_2(h1, ini)=g1 AND Navigation_2(h2, acc)=g2
AND Leq(composition(composition(h1, one), h2),

Navigation(cConnections, con))
AND Navigation_2(h3, ini)=g2
AND Navigation_2(h3, hDm)=Navigation_2(h2, hDm)
AND Navigation_2(h3, tar)=Navigation_2(h2, src)
IMPLIES
(EXISTS (h4: (Hop)):

Navigation_2(h4, acc)=g1 AND
Leq(composition(composition(h3, one), h4),

Navigation(cConnections, con)))

The modified pretty printer displays the same predicate to the user as follows:

FAL_Returnability :

|-------

{1} all g1,g2: Client, h1,h2,h3: Hop |

(h1.ini)=g1 AND (h2.acc)=g2 AND

(h1->h2) in (cConnections.con) AND

(h3.ini)=g2 AND (h3.hDm)=(h2.hDm) AND (h3.tar)=(h2.src)

IMPLIES

(some h4: Hop |

(h4.acc)=g1 AND (h3->h4) in (cConnections.con))

Notice that the pretty printed version closely resembles the Alloy definition.
Furthermore, it can even be compiled with the Alloy Analyzer.

The proof fragment presented in the Appendix (Fig. 2) shows a branch in
the proof tree of the property informally described as follows:

The “Accept” ends in a link, point to hops that contain the link’s agent

as acceptor.

We have shown that it is possible to make proofs within the presented calculus
with the aid of Dynamite. We now present some empirical data that will allow
readers to have a better understanding of the usability of the tool.

The proofs were carried on by a student who had just graduated, and had
no previous experience neither with Alloy, nor with PVS. The estimated time he
spent in order to master the proof process is the following. 5 days to learn Alloy’s

syntax and semantics. 15 days to learn PVS, including the understanding of the
proof rules. 40 days to prove all the assertions contained in the Alloy model. 15
days to prove the non trivial required lemmas about PDOCFAs. These lemmas
can be considered as infrastructure lemmas, that will be reused in future proofs.

Recall that relations of rank greater than 2 are encoded as binary ones. There-
fore, it may be necessary to prove properties that deal with the representation.
These are the only proofs that would not be completely natural to an Alloy user.
The proof of all the assertions in the model comprises 285 lemmas, of which only
12 use this kind of properties. Moreover, the 12 lemmas use actually 8 di↵erent
properties of the representation because 3 properties are used at least twice.

Table 1 shows some numerical information about the proofs of the specific
assertions. Notice that the sum of the total of lemmas amounts to 365. Therefore,
365� 285 = 80 lemmas were re-used in the proof of di↵erent assertions.

Assertion Total Model Algebra Time

Lemmas Lemmas Lemmas (days)

ConnectedIsEquivalence 79 4 75 10

UnidirectionalChains 52 28 24 5

Reachability 121 62 59 23

Returnability 113 66 47 17

Table 1. Distribution of the workload.

6 Discussion

Abstracting from Alloy and PVS, our work can be described as a lightweight com-
bination of a counterexample extractor with a semi-automatic theorem prover.
This topic has been addressed by several researchers. Among the most relevant
contributions we cite [7]. In [7], rather than focusing on providing theorem-
proving capabilities to a lightweight formal method, the authors use model
checking in order to look for counterexamples before (and during) the theorem
proving process. This covers part (but not all) of our intentions when combin-
ing Alloy and PVS. In [10], alternative and more ambitious ways of combining
model checking and theorem proving are presented. Model checkers and theorem
provers interact using the latter for local deductions and propagation of known
properties, while the former are employed in order to calculate new properties
from reachability predicates or their approximations. Being Alloy models static,
it is not clear how to employ these techniques, but it is clearly a road that we
will explore in the near future. There are two approaches that we are aware
of in what respects to theorem proving of Alloy assertions. One is the theorem
prover Prioni [2]. Prioni translates Alloy specifications to first-order formulas
characterizing their first-order semantics, and then the first-order logic theorem
prover Athena [1] is used in order to prove the resulting theorem. While the
procedure is sound, it is not completely amenable to Alloy users. Switching from

a relational to a non relational language poses an overhead on the user. The
other theorem prover is the one presented in [5]. This theorem prover translates
Alloy specifications to a close relational language based on binary relations (the
calculus for omega closure fork algebras [3]). Since the resulting framework is an
equational calculus, quantifiers were removed from Alloy formulas in the trans-
lation process. This lead to very complicated equations, far from what an Alloy
user would expect.

In this article we made two contributions. In the theoretical side we have
provided a complete proof calculus for Alloy that we, as frequent Alloy users, find
more amenable than previous ones. On the applied side we presented Dynamite,
a tool that supports the interaction of the PVS semi-automatic theorem prover
with the Alloy Analyzer. In order to assess the usability of the tool, we have
proved several complex properties and obtained some empirical data. It is to
expect that a domain expert used to the tool will make a more e�cient use
of Dynamite. This is a thesis we are testing by proving new network related
properties recently supplied by Zave.

References

1. Arkoudas K., Type-! DPLs, MIT AI Memo 2001-27, 2001.
2. Arkoudas K., Khurshid S., Marinov D. and Rinard M., Integrating Model Check-

ing and Theorem Proving for Relational Reasoning, in Proceedings of RelMiCS’03
(Relational Methods in Computer Science), LNCS, Springer, 2003.

3. Frias M., Fork Algebras in Algebra, Logic and Computer Science, World Scientific
Publishing Co., Series Advances on Logic, 2002.

4. Frias, M. F., Haeberer, A. M. and Veloso, P. A. S., A Finite Axiomatization for

Fork Algebras, Logic Journal of the IGPL, Vol. 5, No. 3, 311–319, 1997.
5. Frias M.F., López Pombo C.G. and Aguirre N., A Complete Equational Calculus for

Alloy, in Proceedings of Internacional Conference on Formal Engineering Methods
(ICFEM’04), Seattle, USA, November 2004, Lecture Notes in Computer Science
3308, Springer-Verlag, 2004, pp. 162–175.

6. Jackson, D., Shlyakhter, I., and Sridharan, M., A Micromodularity Mechanism. Proc.
ACM SIGSOFT Conf. Foundations of Software Engineering/European Software En-
gineering Conference (FSE/ESEC ’01), Vienna, September 2001.

7. Kong W., Ogata K., , Seino T., and Futatsugi K., A Lightweight Integration of The-

orem Proving and Model Checking for System Verification, in Proc. of APSEC’05,
IEEE.

8. Maddux, R. D., Pair-Dense Relation Algebras, Transactions of the AMS, Vol. 328,
N. 1, 1991.

9. Shankar N., Owre S., Rushby J. M., and Stringer-Calvert D. W. J., PVS Prover

Guide. Computer Science Laboratory, SRI International, Menlo Park, CA, Septem-
ber 1999.

10. Shankar N., Combining Theorem Proving and Model Checking through Symbolic

Analysis, in Proc. of CONCUR 2000, LNCS, Springer, 2000.
11. Zave, P., A Formal Model of Addressing for Interoperating Networks, in Proceedings

of the Thirteenth International Symposium of Formal Methods Europe, Springer-
Verlag LNCS 3582, pages 318-333, 2005.

A Appendix

assert ConnectedIsEquivalence { all c: Connections |
(all h: Hop | h in h.(c.connected)) &&
(all h1,h2: Hop | h1 in h2.(c.connected) =>

h2 in h1.(c.connected)) &&
(all h1,h2,h3: Hop |

h2 in h1.(c.connected) &&
h3 in h2.(c.connected) =>
h3 in h1.(c.connected))

}

assert UnidirectionalChains { all l: Link |
(l.agent = l.oneHop.acceptor &&
l.agent = l.anotherHop.initiator) ||
(l.agent = l.oneHop.initiator &&
l.agent = l.anotherHop.acceptor)

}

assert Reachability{ all c: Connections,
g1, g2: Client, h: Hop, a: Address, d: Domain |

g1=h.initiator && d=h.domain && a=h.target &&
(a->d) in g2.knownAt

=> (some h2: Hop | g2=h2.acceptor &&
(h->h2) in c.connected) }

assert Returnability{ all c: Connections,
g1, g2: Client, h1, h2, h3: Hop |
h1.initiator=g1 && h2.acceptor=g2 &&
(h1->h2) in c.connected &&
h3.initiator=g2 &&
h3.domain=h2.domain && h3.target=h2.source

=> (some h4: Hop | h4.acceptor=g1 &&
(h3->h4) in c.connected) }

assert Returnability{ all c: Connections,
g1, g2: Client, h1, h2, h3: Hop |
h1.initiator=g1 && h2.acceptor=g2 &&
(h1->h2) in c.connected &&
h3.initiator=g2 &&
h3.domain=h2.domain && h3.target=h2.source

=> (some h4: Hop | h4.acceptor=g1 &&
(h3->h4) in c.connected) }

Falta una propiedad y no
la encuentro!!!

We proved these properties from the Alloy model using
Dynamite. Without using the modified pretty printer from
PVS, the PVS specification of the returnability predicate
looks like this:

FAL_Returnability :

|-------
{1} FORALL (hDm: (hop_domain), fDm: (feature_domain),

tDm: (toDomain), tar: (target), rem: (remote),
aCn: (atomConnected), con: (connected), oHp: (oneHop),
aHp: (anotherHop), rBy: (reachedBy), map: (map),
acc: (acceptor), srv: (servers), exp: (exported),
imp: (imported), loc: (local), iTr: (interTrans),
spc: (space), agn: (agent), oEd: (oneEnd),
aEd: (anotherEnd), ini: (initiator),
att: (attachments), src: (source)):

FORALL (g1, g2: (Client), h1, h2, h3: (Hop)):
Navigation_2(h1, ini)=g1 AND Navigation_2(h2, acc)=g2
AND Leq(composition(composition(h1, one), h2),

Navigation(cConnections, con))
AND Navigation_2(h3, ini)=g2
AND Navigation_2(h3, hDm)=Navigation_2(h2, hDm)
AND Navigation_2(h3, tar)=Navigation_2(h2, src)
IMPLIES
(EXISTS (h4: (Hop)):

Navigation_2(h4, acc)=g1 AND
Leq(composition(composition(h3, one), h4),

Navigation(cConnections, con)))

After the pretty printer was modified, the same predicate
now is presented to the user as follows:

FAL_Returnability :

|-------
{1} all g1,g2: Client, h1,h2,h3: Hop |

(h1.ini)=g1 AND (h2.acc)=g2 AND
(h1->h2) in (cConnections.con) AND
(h3.ini)=g2 AND (h3.hDm)=(h2.hDm) AND (h3.tar)=(h2.src)
IMPLIES
(some h4: Hop |

(h4.acc)=g1 AND (h3->h4) in (cConnections.con))

Notice that the pretty printed version closely resembles
the Alloy definition. Furthermore, it can even be compiled
with the Alloy Analyzer.

The proof fragment presented in Fig. 1 shows a branch
in the proof tree of the property informally described as
follows:

“Accept” ends in a link, point to hops that con-
tain the link’s agent as acceptor.

6. CONCLUSIONS

7. REFERENCES

FAL_EveryAcceptorEndContainsTheAgentOfTheLink :

|-------
{1} all h: Hop, l: Link | (h=(l.oneHop) AND Accept=(l.oneEnd))

OR (h=(l.anotherHop) AND Accept=(l.anotherEnd))
IMPLIES (l.agent)=(h.acceptor)

Rule? (skosimp*)
Repeatedly Skolemizing and flattening, simplifies to:
FAL_EveryAcceptorEndContainsTheAgentOfTheLink :

{-1} (h!1=(l!1.oneHop!1) AND Accept=(l!1.oneEnd!1)) OR
(h!1=(l!1.anotherHop!1) AND Accept=(l!1.anotherEnd!1))

|-------
{1} (l!1.agent!1)=(h!1.acceptor!1)

Rule? (case "((l!1.oneEnd!1) in Accept
IMPLIES (l!1.agent!1)=((l!1.oneHop!1).acceptor!1))
AND ((l!1.anotherEnd!1) in Accept
IMPLIES (l!1.agent!1)=((l!1.anotherHop!1).acceptor!1))")

Case splitting on
((l!1.oneEnd!1) in Accept IMPLIES
(l!1.agent!1)=((l!1.oneHop!1).acceptor!1))
AND ((l!1.anotherEnd!1) in Accept
IMPLIES (l!1.agent!1)=((l!1.anotherHop!1).acceptor!1)),

this yields 2 subgoals:
FAL_EveryAcceptorEndContainsTheAgentOfTheLink.1 :

{-1} ((l!1.oneEnd!1) in Accept IMPLIES
(l!1.agent!1)=((l!1.oneHop!1).acceptor!1))
AND ((l!1.anotherEnd!1) in Accept
IMPLIES (l!1.agent!1)=((l!1.anotherHop!1).acceptor!1))

[-2] (h!1=(l!1.oneHop!1) AND Accept=(l!1.oneEnd!1)) OR
(h!1=(l!1.anotherHop!1) AND Accept=(l!1.anotherEnd!1))

|-------
[1] (l!1.agent!1)=(h!1.acceptor!1)

Rule? (flatten -1)
Applying disjunctive simplification to flatten sequent,
this simplifies to:
FAL_EveryAcceptorEndContainsTheAgentOfTheLink.1 :

{-1} ((l!1.oneEnd!1) in Accept IMPLIES
(l!1.agent!1)=((l!1.oneHop!1).acceptor!1))

{-2} ((l!1.anotherEnd!1) in Accept IMPLIES
(l!1.agent!1)=((l!1.anotherHop!1).acceptor!1))

[-3] (h!1=(l!1.oneHop!1) AND Accept=(l!1.oneEnd!1)) OR
(h!1= (l!1.anotherHop!1) AND Accept=(l!1.anotherEnd!1))

|-------
[1] (l!1.agent!1)=(h!1.acceptor!1)

Rule? (split -3)
Splitting conjunctions, this yields 2 subgoals:
FAL_EveryAcceptorEndContainsTheAgentOfTheLink.1.1 :

{-1} (h!1=(l!1.oneHop!1) AND Accept=(l!1.oneEnd!1))
[-2] ((l!1.oneEnd!1) in Accept IMPLIES

(l!1.agent!1)=((l!1.oneHop!1).acceptor!1))
[-3] ((l!1.anotherEnd!1) in Accept IMPLIES

(l!1.agent!1)=((l!1.anotherHop!1).acceptor!1))
|-------

[1] (l!1.agent!1)=(h!1.acceptor!1)

Rule? (hide -3)
Hiding formulas: -3, this simplifies to:
FAL_EveryAcceptorEndContainsTheAgentOfTheLink.1.1 :

[-1] (h!1=(l!1.oneHop!1) AND Accept=(l!1.oneEnd!1))
[-2] ((l!1.oneEnd!1) in Accept IMPLIES

(l!1.agent!1)=((l!1.oneHop!1).acceptor!1))
|-------

[1] (l!1.agent!1)=(h!1.acceptor!1)

Rule? (prop)
Applying propositional simplification, this yields 2 subgoals:
FAL_EveryAcceptorEndContainsTheAgentOfTheLink.1.1.1 :

{-1} (l!1.agent!1)=((l!1.oneHop!1).acceptor!1)
{-2} h!1=(l!1.oneHop!1)
{-3} Accept=(l!1.oneEnd!1)

|-------
[1] (l!1.agent!1)=(h!1.acceptor!1)

Rule? (replace -2 -1 rl :hide? t)
Replacing using formula -2, this simplifies to:
FAL_EveryAcceptorEndContainsTheAgentOfTheLink.1.1.1 :

{-1} (l!1.agent!1)=(h!1.acceptor!1)
[-2] Accept=(l!1.oneEnd!1)

|-------
[1] (l!1.agent!1)=(h!1.acceptor!1)

which is trivially true.

This completes the proof of FAL_EveryAcceptorEndContainsTheAgentOfTheLink.1.1.1.

Figure 1: A proof fragment.Fig. 2. A proof fragment.

