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Abstract. According to the Verified Software Initiative manifesto,
“Lightweight techniques and tools have been remarkably success-

ful in finding bugs and problems in software. However, their suc-

cess must not stop the pursuit of this projects long-term scientific

ideals”.
The Dynamite Proving System (DPS) blends the good qualities of the
lightweight formal method Alloy with the certainty provided by the the-
orem prover PVS. Using the Alloy Analyzer during the proving process
improves the PVS theorem proving experience by reducing the number
of errors introduced along creative proof steps. Therefore, rather than
becoming an obstacle to the goals of the Initiative, inside DPS Alloy
becomes an aid. In this article we introduce new features of DPS based
on the novel use of unsat cores to guide the proving process by prun-
ing unnecessary information. We illustrate these new features using a
non-trivial case-study coming from the networking domain.

1 Introduction

The Dynamite Proving System (DPS) was presented in [7]. The rationale be-
hind DPS is that automated analysis, albeit incomplete, should support for-
mal verification processes based on theorem proving. DPS has Alloy [9] as its
specification language. Alloy’s syntax includes constructs ubiquitous in modern
object-oriented languages. The Alloy Analyzer [10], an analysis tool that provides
automated (partial) analysis of Alloy specifications, makes Alloy a lightweight
formal method with increasing adoption in academy and industry. The Alloy
language (an extension of first-order logic with reflexive-transitive closure) is
quite appropriate for modeling critical systems. According to the VSI manifesto
[8],

“Even though software requirements cannot be verified against a cus-

tomers informal needs and desires, a great deal of clarity, insight, and

precision can be gained by formalizing these requirements as a more pre-

cise specification. Once this is done, verification technology can be applied



to the resulting formal specification, to investigate its consistency and to

see if it captures important system properties such as safety or security.”

The partial analysis offered by the Alloy Analyzer assumes data domains have
a user-bounded size, called scope. Moreover, the analysis technique employed by
the Alloy Analyzer (based on SAT-solving), does not scale well enough when do-
main sizes are increased past a (specification dependent) threshold. This should
not be considered a shortcoming. Alloy’s use is targeted at model debugging,
and therefore small domain sizes are many times sufficient to uncover errors in
specifications. Unfortunately, this kind of analysis only allows us to conclude
that a system model is consistent, safe or secure up to a given size for data
domains.

The Dynamite Proving System was developed with the intention of providing
a tool for the verification (in the sense of the VSI Manifesto) of Alloy models.
In order to accomplish this task, DPS extends the PVS [12] semi-automated
theorem prover with a complete calculus for Alloy. We also integrated the Al-
loy Analyzer into DPS in order to automatically detect bugs introduced during
creative proof steps (introduction of lemmas, new hypotheses, etc.) Including
a pretty printer that exhibits sequents using Alloy notation, DPS provides the
clerical Alloy user a more amenable and less error-prone theorem proving expe-
rience.

In order to better convey the contributions of this article, we will briefly
discuss the proving process within PVS and DPS. DPS provides a complete
calculus for Alloy, implemented on top of the higher-order calculus provided by
PVS. In order to prove that a set of formulas ∆ = { δ1, . . . , δm } follows from
a set of hypotheses Γ = { γ1, . . . , γk }, one begins with the sequent Γ ⊢ ∆.
Applying inference rules, from Γ ⊢ ∆ one must reach other sequents that can
be recognized as valid (for example, sequents of the form α ⊢ α). The informal
understanding of the sequent Γ ⊢ ∆ is that from the conjunction of the formulas
in Γ , the disjunction of the formulas in ∆ must follow. The formulas in Γ (∆)
are called the antecedent (consequent) of the sequent.

The application of an inference rule results in one or more new sequents whose
proofs provide a proof of the original sequent. Therefore, proofs in this kind of
calculi are usually seen as trees in which the root is the sequent Γ ⊢ ∆. When
all the leaves of the proof tree are valid sequents (in the sense mentioned before)
the tree is considered closed and the proof is finished. In Fig. 1 we present, as
examples, proof rules in order to deal with conjunctions in the antecedent and
the consequent, respectively.

α, β, Γ ⊢ ∆

α ∧ β, Γ ⊢ ∆
∧ ⊢

Γ ⊢ ∆,α Γ ⊢ ∆,β

Γ ⊢ α ∧ β,∆
⊢ ∧

Fig. 1. Proof rules for conjunction.



On start of a proof of an Alloy assertion α, DPS presents sequent ⊢ α. A
proof must then be derived using the inference rules. Whenever the application
of an inference rule introduces new goals (sequents) to be proved, some of the
antecedents and consequents inherited by the new sequents may be unnecessary
to close the branch that initiates in that sequent. Our experience using DPS
in our case-study is that along a proof of a given assertion the number of an-
tecedents and consequents in intermediate sequents tends to grow. This leads
many times to formulas that are not necessary in order to prove the sequents.
These formulas make the identification of new proof steps more complex. PVS
provides a command (hide) for hiding hypotheses and conclusions in sequents,
yet its use is error-prone: removing necessary antecedents or consequents makes
the proof infeasible.

In this article we will use an Alloy UnSAT-core [16] in order to remove
formulas from sequents and from the underlying theories. An Alloy UnSAT-core
is a subset of formulas (and even parts of formulas) from an inconsistent (up-to
the selected scopes) Alloy theory that is itself inconsistent. How is an inconsistent
theory obtained at a given point in the proving process? Notice that proving a
sequent Γ ⊢ ∆ in a theory Ω (where Γ = { γ1, . . . , γk } and ∆ = { δ1, . . . , δm }),
is equivalent to proving in theory Ω the sequent
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Elemental logic reasoning allows us to conclude that the former sequent is deriv-
able if and only if the theory
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is inconsistent.
Notice that since we are not requesting a minimal UnSAT-core, the UnSAT-

core might be the whole theory. Fortunately, this is most times not the case.
The contributions of this article are summarized as follows:

1. We release DPS 2.0, downloadable from http://www.dc.uba.ar/dynamite.
2. We present a novel heuristic to reduce the proof search space based on the use

of UnSAT cores to remove possibly unnecessary antecedents and consequents
in a sequent. The technique also allows us to remove formulas from the
underlying theories.

3. We discuss the presented heuristic focusing on its (un)soundness and/or
(in)completeness.

4. We discuss the applicability of the heuristic using as a reference a nontrivial
case-study.

5. We present some experimental results obtained from extensively using this
heuristic along the proving process in our case-study.



The article is organized as follows. In Section 2 we present our running ex-
ample. In Section 3 we describe the proving process within Dynamite, including
a discussion on how lightweight and heavyweight formal methods can be com-
bined in a synergic way. In Section 4, after a short introduction to UnSat-cores,
we present our heuristic for proof space reduction and discuss some experiences
learnt using the technique. In Section 5 we discuss related work. Finally, in
Section 6 we present our conclusions and proposals for further work.

2 Compositional Binding in Network Domains

In order to test the usefulness of the techniques we will present in this article, we
worked on an Alloy model presented by Zave in [21]. There are good reasons for
choosing this model. The first one is that although the model is not extremely
complex, its analysis using the Alloy Analyzer does not scale for some properties
even for small scopes. Notice that “small scope” is a subjective notion that
strongly depends on the user knowledge about the model. It is seldom the case
that Alloy models include information on the willingness of the user to analyze
the model for scopes that surpass the possibilities of the Alloy Analyzer. This
model is particular in that it thoroughly documents the intentions of the user:

check StructureSufficientForPairReturnability for 2 but

2 Domain, 2 Path, 3 Agent, 9 Identifier -- this one is too big also

check StructureSufficientForPairReturnability for 2 but

2 Domain, 2 Path, 3 Agent, 11 Identifier

-- attempted but not completed at MIT; formula is not that large; results

-- suggest that the problem is very hard, and that the formula is almost

-- certain unsatisfiable [which means that the assertion holds]

Notice that the modeler was concerned enough about the validity of the model
assertions that she requested assistance from the developers of the Alloy Ana-
lyzer. The limitations of the automated techniques open the possibility to use
verification in order to determine the validity (or not) of the model assertions.
Of course there are other Alloy models that are also good candidates to be
verified using DPS. Among these, we want to mention the Mondex electronic
purse presented in [14], or the Flash filesystem presented in [11]. Since these
problems have become sort of benchmarks for different analysis and verification
techniques, it was our intention to leave them as interesting case-studies that
might attract new users of DPS.

Zave formalizes a mechanism for binding of identifiers in the delivery of mes-
sages in computer networks. Thus, the model is not a specification of an isolated
software or hardware artifact but rather the specification of network services
whose implementation may involve several software and hardware artifacts. This
model is mainly about communication in computer networks, and, more specifi-
cally, about how communicating agent identifiers are bound so that the messages
reach their correct destination. Properties about the possibility of reaching an
agent, determinism in the delivery of messages, existence of cycles in the rout-
ing of messages and the possibility of constructing a return path for a message



are formally specified in the model. In particular, the model studies how these
properties are affected by the addition of new bindings of identifiers.

Communicating artifacts in these kinds of networks may be software systems
or hardware devices. As this distinction is not important for the specification,
all the communicating artifacts are called agents. Thus, the communications are
established between agents and take place over network domains.

An agent g is considered reachable in a domain d from an identifier i if:

– i is connected to an address a in the reflexive and transitive closure of the
binary relation formed by all the bindings corresponding to d,

– a cannot be bound to another identifier in d, and
– a can route messages to g in d.

Figure 2 shows an Alloy assertion BindingPreservesReachability. This
assertion states that if an agent is reachable in a domain d, it is also reachable in
the domain resulting from adding a new binding to d, provided that the newly
bound identifiers are not used in d. This latter condition is formalized by a
predicate IdentifiersUnused.

assert BindingPreservesReachability {
all d, d’: Domain, newBinding: Identifier -> Identifier |

IdentifiersUnused(d,newBinding.Identifier) &&

AddBinding(d,d’,newBinding)

=> (all i: Identifier, g: Agent |

ReachableInDomain(d,i,g) => ReachableInDomain(d’,i,g) ) }

Fig. 2. One proved property: BindingPreservesReachability.

A domain is called deterministic if each identifier is associated to at most
one agent. One of the properties to be analyzed for this model states that

whenever a new binding for an unused identifier is added to a determin-

istic domain, it remains deterministic.

A domain is considered non-looping if the transitive closure of the bindings
for that domain has no cycles. A second assertion then states that

the addition of a new binding to a non-looping domain does not change

this condition whenever the transitive closure of the new binding does

not have cycles.

Also a notion of structured domain is introduced.
In [21], Zave used the Alloy Analyzer to analyze this model and concluded

that these five properties hold for Alloy domains containing at most two network
domains and four elements in each set (such as identifiers, agents, etc).

Using DPS we have proved that the following assertions hold despite their
domain bounds:



– BindingPreservesReachability,
– BindingPreservesDeterminism,
– BindingPreservesNonLooping,
– ABindingPreservesStructure, and
– BBindingPreserverStructure.

Notice that these assertions suffer the similar limitations, regarding their ana-
lyzability, with assertion StructureSufficientForPairReturnability.

3 An Introduction to the Dynamite Proving System

The Dynamite Proving System is an extension of the PVS theorem prover [12]
that interacts with the Alloy Analyzer. Alloy is a formal modeling language well
suited for modeling of critical systems. Its simple semantics based on relations
and the automated analysis provided by the Alloy Analyzer make Alloy an in-
creasingly accepted lightweight formal method. The analysis provided by the
Alloy Analyzer assumes domains sizes are user-bounded, and is therefore par-
tial. This makes the Alloy Analyzer unsuitable for verification of critical models.
An alternative would be the use of a theorem prover in order to verify Alloy
assertions. Unfortunately, no complete calculus for Alloy was known. In [7] we
presented such complete calculus, and extended PVS in order to include the cal-
culus. An appropriate pretty-printer allowed us to present formulas using Alloy
notation.

While PVS automatically detects syntactic errors and uses proof techniques
in order to (try to) automatize parts of the proofs, some errors many times
cannot be detected. We refer to the errors that occur when:

1. An invalid sequent has to be proved.
2. An invalid lemma is introduced.
3. A new hypothesis (which does not follow from the axioms in the current

model or the antecedents of the sequent being proved) is added.
4. A necessary formula is incorrectly hidden from a sequent.

In [7] we deal with the first three situations. In order to reduce the chances of
introducing erroneous lemmas or hypotheses, DPS resorts to the Alloy Analyzer.
Let us assume we are proving a sequent γ1, . . . , γk ⊢ δ1, . . . , δn, and a new
hypothesis ϕ is introduced using the PVS command (case varphi). According
to PVS, we are now left with two sequents to prove, namely,

γ1, . . . , γk, ϕ ⊢ δ1, . . . , δn and γ1, . . . , γk ⊢ δ1, . . . , δn, ϕ.

It might be the case that ϕ is overly strong, i.e., it simplifies proving se-
quent γ1, . . . , γk, ϕ ⊢ δ1, . . . , δn, but sequent γ1, . . . , γk ⊢ ϕ (which allows us
to discharge the newly added hypothesis) is not valid. In order to detect such
situations, an Alloy model is automatically created. The model contains, as an
assertion to be checked using the Alloy Analyzer, the formula





∧

1≤i≤k

γi



 ⇒ ϕ.



If a counterexample is returned by the Alloy Analyzer, then it is automat-
ically reported by DPS. The existence of a counterexample means that the se-
quent is not valid and therefore formula ϕ is too restrictive. In Fig. 3 we show
a proof fragment from our case-study where this happens. We have a sequent S
of the form γ1, γ2 ⊢ δ1. We then introduce a new hypothesis h, and obtain new
goals γ1, γ2, h ⊢ δ1 and γ1, γ2 ⊢ δ1, h. The proof structure for S is:

Notice the following:

– Goals ABindingPreservesStructure.2.1 and 2.2 are validated in Fig. 3
using the Alloy Analyzer. Notice that no counterexamples are found (as
reported inside the dashed boxes), and therefore the goals may be correct.

– When goal ABindingPreservesStructure.2.2 is validated after formula 2
is hidden, inside the solid square a counterexample is reported. Notice that
hiding formula 2 is a reasonable decision, since we are trying to verify that
the introduced hypothesis indeed follows from the sequent antecedents.

– Although not related to the technique, we want to stress the fact that for-
mulas in sequents are actual Alloy formulas.

The counterexample can be used in order to gain a better understanding of
the model.

4 Reducing the Proof Search Space Using UnSAT-Cores

In this section we will discuss two techniques to reduce the proof search space
during the theorem proving process. The first technique uses an iterative proce-



ABindingPreservesStructure.2 :  

[-1]  (no (((d1_1 . AdstBinding) . Identifier) & ((d1_1 . BdstBinding) . Identifier)))
[-2]  (no (((d1_1 . dstBinding) . Identifier) & (newBinding_1 . Identifier)))
  |-------
{1}   (no ((((d1_1 . AdstBinding) + newBinding_1) . Identifier) & ((d1_1 . BdstBinding) . Identifier)))

Rule? (dps-case "no (d1_1 . AdstBinding)")
Translating the formula.Formula translated.
Introducing case...,
this yields  2 subgoals: 
ABindingPreservesStructure.2.1 :  

{-1}  (no (d1_1 . AdstBinding))
[-2]  (no (((d1_1 . AdstBinding) . Identifier) & ((d1_1 . BdstBinding) . Identifier)))
[-3]  (no (((d1_1 . dstBinding) . Identifier) & (newBinding_1 . Identifier)))
  |-------
[1]   (no ((((d1_1 . AdstBinding) + newBinding_1) . Identifier) & ((d1_1 . BdstBinding) . Identifier)))

Rule? (dps-validate-goal :for 5)
Trying to validate the goal with models of size 5.
No counter-example found in that scope. The goal may be valid. 
(There are available suggestions. Use M-x show-suggestions to see them.)

Rule? (postpone)
Postponing ABindingPreservesStructure.2.1.

ABindingPreservesStructure.2.2 :  

[-1]  (no (((d1_1 . AdstBinding) . Identifier) & ((d1_1 . BdstBinding) . Identifier)))
[-2]  (no (((d1_1 . dstBinding) . Identifier) & (newBinding_1 . Identifier)))
  |-------
{1}   (no (d1_1 . AdstBinding))
[2]   (no ((((d1_1 . AdstBinding) + newBinding_1) . Identifier) & ((d1_1 . BdstBinding) . Identifier)))

Rule? (dps-validate-goal :for 5)
Trying to validate the goal with models of size 5.
No counter-example found in that scope. The goal may be valid. 
(There are available suggestions. Use M-x show-suggestions to see them.)
No change on: (dps-validate-goal :for 5)
ABindingPreservesStructure.2.2 :  

Rule? (hide 2)
Hiding formulas:  2,
this simplifies to: 
ABindingPreservesStructure.2.2 :  

[-1]  (no (((d1_1 . AdstBinding) . Identifier) & ((d1_1 . BdstBinding) . Identifier)))
[-2]  (no (((d1_1 . dstBinding) . Identifier) & (newBinding_1 . Identifier)))
  |-------
[1]   (no (d1_1 . AdstBinding))

Rule? (dps-validate-goal :for 5)
Trying to validate the goal with models of size 5.
Counterexample found. The goal is invalid.

Fig. 3. A proof fragment where an overly restrictive hypothesis is introduced.

dure in order to remove formulas from sequents. The second technique uses an
UnSAT-core in order to determine which formulas can be removed. In Section
4.1 we discuss the iterative technique. In Section 4.2 we present the technique
based on UnSAT-core extraction and compare it with the iterative technique.
Finally, in Section 4.3 we present some experimental results about the usefulness
of the proposed techniques.

Along this section we will assume we are willing to prove a sequent Γ ⊢ ∆

(where Γ = { γ1, . . . , γk } and ∆ = { δ1, . . . , δm }) from a theory Ω containing
axioms ω1, . . . , ωn. In order to reduce the proof search space we will try to
remove formulas from Γ , ∆ and Ω. Notice that having fewer formulas actually
reduces the proof search space. Many proof steps that could depend on the
removed formulas (rules for instantiation, rewriting, or applying strategies) are
now avoided. This reduces the number of instantiations of inference rules that
the theorem prover has to consider, as well as helps the user stay focused on the
relevant parts of the sequent.

4.1 An Iterative Technique to Reduce the Proof Search Space

The algorithm in Fig. 4 allows us to determine a set of formulas candidate to
be removed. The algorithm attempts to remove each formula ϕ, and analyzes



(using the Alloy Analyzer) whether the sequent obtained after formula ϕ has
been removed is valid or not. If the sequent is valid, then ϕ can be (safely?)
removed.

algorithm iterative_remove(Gamma, Delta, Omega)

// let Gamma = {g1,...,gk},

// let Delta = {d1,...,dm},

// let Omega = {o1,...,on}.

for i=1 to k do

if proves(Gamma - gi, Delta, Omega) then

Gamma = Gamma - gi

fi

od

for i=1 to m do

if proves(Gamma, Delta - di, Omega) then

Delta = Delta - di

fi

od

for i=1 to n do

if proves(Gamma, Delta, Omega - oi) then

Omega = Omega - oi

fi

od

Fig. 4. The iterative algorithm.

Procedure “proves(A, B, C)” (for A = { a1, . . . , ak1
}, B = { b1, . . . , bm1

} and
C = { c1, . . . , cn1

}) checks, using the Alloy Analyzer, whether sequent A ⊢ B holds
in theory C. In Alloy terms, this amounts to checking, having as facts formulas
c1, . . . , cn1

, the assertion





∧

1≤i≤k1

ai



 ⇒





∨

1≤j≤m1

bj



 . (1)

Procedure proves returns true whenever the Alloy analysis does not produce a
counterexample.

The previous Alloy analysis requires providing a scope for data domains.
Therefore, it might be the case that the analysis of formula (1) does not return
a counterexample, yet the formula indeed has counterexamples in larger scopes.
This shows that this technique is not complete, since a necessary formula might
be removed (this explains the question mark on “safely” above) and a valid
sequent may no longer be derivable. This is not a problem in itself. Hiding
formulas based on the user’s intuition is not complete either. Since removing
formulas does not allow us to prove previously underivable sequents, refining



sequents and theories as explained is a sound rule. In Section 4.3 we will discuss
experimental results in order to determine the utility of the technique.

4.2 Using the UnSAT-Core Extraction Feature to Remove Formulas

Some SAT-solvers, such as MiniSat [6] among the ones provided by the Alloy
Analyzer, allow one to obtain upon completion of the analysis of an inconsistent
propositional theory, an UnSAT-core. An UnSAT-core is a subset of clauses from
the original inconsistent theory that is also inconsistent. The UnSAT-core ex-
traction algorithm implemented in MiniSat produces many times small UnSAT-
cores. The Alloy Analyzer converts the propositional UnSAT-core into an Alloy
UnSAT-core [16] (i.e., a subset of the Alloy model that is also inconsistent if
the source model was inconsistent). Notice that the algorithm in Fig. 4 actu-
ally computes an Alloy UnSAT-core. Moreover, it computes a minimal Alloy
UnSAT-core.

Our proposal in order to remove unnecessary formulas when proving a se-
quent Γ ⊢ ∆ in a theory Ω (where Γ = { γ1, . . . , γk }, ∆ = { δ1, . . . , δm } and
Ω = {ω1, . . . , ωn }) consists on requesting the Alloy Analyzer an UnSAT-core of
the Alloy model whose set of facts is Ω, and the assertion to be checked is
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∨
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δj



 .

Upon extraction of the UnSAT-core, the Alloy Analyzer highlights those for-
mulas from Γ ∪ ∆ ∪ Ω that are part of the UnSAT-core. We propose (as a
strategy to use in the proving process) to remove those formulas that are not
highlighted. Figure 5 shows a sequent from the running case-study where some
of the formulas are highlighted (those that are part of the UnSAT-core). Notice
that upon application of rule dps-hide (our new proof rule that allows to hide
non-highlighted formulas) the formulas that were not highlighted are hidden. In
this example (an actual sequent from the case-study) only 5 out of 23 formulas
are kept in the sequent upon application of rule dps-hide. As with the iterative
technique, addition of rule dps-hidemakes the logic incomplete, but still sound.

Since the technique presented in Section 4.1 ends up computing an Alloy
UnSat-core, a comparison to the technique presented in this section is mandatory.
Notice first that the iterative technique guarantees a minimal Alloy UnSAT-core,
while the UnSAT-core extraction presented in this section does not guarantee
minimality. This implies that use of the UnSAT-core extraction feature provided
by the Alloy Analyzer may include formulas that could be removed. An essential
aspect that moved us towards adopting the technique based on UnSAT-cores is
the overhead imposed on the theorem proving process. Given a sequent Γ ⊢ ∆

to be proved in a theory Ω such that |Γ | = k, |∆| = m and |Ω| = n, the iterative
algorithm requires k+m+n calls to the SAT-solver. On the other hand, obtaining
the UnSAT-core requires a single call to the SAT-solver. Ideally, the (sequent
and theory) refinement process must be applied at each proof step where the



Fig. 5. A sequent with a highlighted UnSAT-core.

sequent under analysis has new or fewer formulas. In Section 4.3 we will show
experimental data supporting the election of this technique.

4.3 Experimental Results

In this section we present some experimental results we have obtained while
applying the techniques presented in Sections 4.1 and 4.2. We begin by presenting
some statistics about the model being verified. We have verified the model in
three different ways, namely:

– Without using any technique for refining the sequents and theories. This
corresponds to verification using Dynamite 1.0, as described in [7] (noted as
NoRec – for no recommendation – in Table 1).

– Using the iterative algorithm in order to refine sequents (see Section 4.1). In
Table 1 we note this technique as IterRec (for iterative recommendation).

– Using the UnSAT-core extraction technique presented in Section 4.2. This
technique will be noted in Table 1 as UnsatRec.

In Table 1 we measure for each technique:

– Length of proofs (measured as the number or rule applications).
– Average number of formulas per sequent.
– Sum of occurrences of formulas in proof sequents.
– At each proof step PVS must consider sentences from the current sequent

as well as the sentences from the underlying theory. We then measure the
average number of such formulas over the different proof steps.



– Sum (over the proof steps) of occurrences of formulas in proof sequents or
from the underlying theories.

– Number of SAT-solver calls for the iterative and the UnSAT-core-based tech-
niques.

– Number of times the UnSAT-core obtained missed a formula necessary for
closing a proof branch.

– Number of times the UnSAT-core allowed us to remove formulas that were
used in the original proof because of an unnecessary detour.

In order to focus on the most relevant data we are ignoring proof steps where
we prove Type Check Constraints (TCCs), which in general can be proved in
a direct way. Also, we only applied the techniques (either the iterative or the
UnSAT-core-based) on 69 proof steps where it was considered relevant to apply
the rules. Systematic application of the iterative technique (for instance each
time a new proof goal was presented by PVS) would have required in the order
of 25000 calls to the SAT-solver. As a general heuristic, we set the scope for all
domains (in the calls to the Alloy Analyzer) to 3.

NoRec IterRec UnsatRec

Proofs’ length 969 597 573
Average # of formulas per sequent 5.89 6.01 6.20
Occurrences of formulas in proofs (no theories) 5706 3590 3215
Average # of formulas in sequents or theories 34.89 35.01 7.02
Occurrences of formulas in proofs (with theories) 33807 20903 4023
# SAT-solver calls N/A 770 69
# times UnSAT-core missed formulas N/A N/A 1
# times UnSAT-core avoided detour N/A N/A 2

Table 1. Measures of attributes for the employed techniques (N/A = not applicable).

Notice that proofs carried out using any of the techniques for sequent and/or
theory refinement are about 40% shorter than the original proof.

In the original proof, as a means to cope with sequents’ complexity, formulas
that were presumed unnecessary were systematically hidden. While the average
number of formulas per sequent is smaller for the original proof, having half the
proof steps shows that the automated techniques are better focused on the more
complex parts of proofs. This is supported by the analysis of the total number
of formulas that occur in sequents. The UnSAT-core-based technique uses 56%
of the formulas used in the original proof, while the iterative technique uses 63%
of the formulas.

Since the underlying theory in the case-study has 29 formulas, the over-
head in applying the iterative technique to formulas in the theory was too high.
Therefore, the iterative technique was only applied to formulas occurring in
the sequents being verified along a proof (we believe this will be the case most



times). On the other hand, the UnSAT-core extraction receives the current se-
quent plus the underlying theory, and automatically refines also the theory. This
explains the big difference between the average number of formulas involved in
proofs (both in sequents and in the supporting theory) using the iterative tech-
nique and the UnSAT-core-based technique. Notice that this implies that in each
proof step PVS had to consider significantly fewer formulas in order to suggest
further proof steps.

Since proofs are shorter and each sequent contains possibly fewer formulas,
the total number of formulas occurring in proofs using UnSAT-cores reduces from
the original proofs in about 88% (recall that hiding was also used in the original
proofs but not in an automated way, and that formulas from the underlying
theory were not hidden). For the iterative technique, the number of formulas
reduces in about 40%.

While using UnSAT-cores required only 69 calls to the SAT-solver, the cor-
responding proof steps using the iterative algorithm required 770 calls to the
SAT-solver (without making calls for formulas occurring in the underlying the-
ory). Thus, the UnSAT-core-based technique requires under 10% of the calls
required by the iterative technique.

Often during the original proof necessary formulas were incorrectly hidden.
We do not have precise records of the number of times this happened because
those erroneous proof steps (which at the time were not considered important)
were most times undone. We only kept track of 9 cases where the reveal com-
mand was used in order to exhibit a previously hidden formula, but these were
just a few of the cases. It is worth comparing with the single case where the
UnSAT-core-based technique missed a formula. This missed formula is recov-
ered if instead of using a scope of 3 in calls to the Alloy Analyzer, scope 5 is
used.

Recalling that we have proved 5 Alloy assertions, the ones corresponding to
assertions BindingPreservesDeterminism and BindingPreservesNonLooping

required fewer formulas during the proof based on UnSAT-cores. This shows
that the original proof used unnecessary formulas that were removed using rule
dps-hide.

A more qualitative analysis of the techniques allows us to conclude that
refining sequents and theories using UnSAT-cores leads to a shift in the way the
user faces the proving process. Looking at the (usually few) remaining formulas
after dps-hide is applied helped the user gain a better understanding on the
property to be proved.

5 Related Work

In this section we discuss work related to Dynamite on the combination of SAT-
solving with theorem proving, and more specific work on the applications of
UnSAT-cores. Using SAT-solving in the context of first-order theorem proving
is not new. The closest works to Dynamite 1.0 are the thesis [20] and the article
[5]. They follow the idea of our 2007 article [7] of using a model generator to



look for counterexamples of formulas being proved by a theorem prover. Previous
articles such as [19] only focus on using the SAT-solver to prove propositional
tautologies and use the resolution proofs provided by the SAT-solver to guide
the theorem prover proofs. This is more restricted than Dynamite 1.0 in that
Dynamite is not constrained to propositional formulas. The 2009 article [4] in-
troduces Nitpick, which is based (as Dynamite 1.0) on Kodkod [17]. Nitpick,
as Dynamite 1.0, helps during the theorem proving process by detecting that a
non-theorem is being proved. It is worth emphasizing that none of these articles
make use of UnSAT-cores during the proving process. Reducing the number of
sentences in sequents has been acknowledged as an important problem by the
Automated Theorem Proving community. The tool MaLARea [18] reduces sets
of hypotheses using machine learning techniques. Sledgehammer [3], uses au-
tomated theorem provers to select axioms during interactive theorem proving.
The iterative technique presented in Section 4.1 shows resemblance with [13],
but [13] uses the Darwin model finder tool to convert first-order sentences into
function-free clause sets. No notion of UnSAT-cores is provided or used. The
SRASS system [15] uses the ideas presented in [13] and complements them with
a notion of syntactic relevance, but does not make use of UnSAT-cores. Last,
theorem proving of Alloy assertions was first considered in [2]. The theorem
prover Prioni translated Alloy sentences to first-order logic sentences, and the
theorem prover Athena [1] was used on the resulting formula. Notice that the
translation removes the relational flavor of Alloy, and therefore Alloy users are
confronted with an unfamiliar formalism. While Prioni is a theorem prover for
the Alloy language, it does not make use of the Alloy Analyzer to contribute to
the proving process.

6 Conclusions and Further Work

In this article we have presented two techniques for the elimination of super-
fluous formulas in sequents and theories. The iterative technique allows us to
remove formulas but is not appropriate in the context of sequents or theories
containing many formulas because it requires many calls to the SAT-solver. It is
appropriate if we restrict the application of the technique to formulas occurring
in sequents and forget about formulas in the supporting theories. To the best of
our knowledge, the idea of refining sequents and theories using UnSAT-cores is
novel and shows (on the experiments reported) to contribute to produce shorter
and more focused proofs.

This article is part of a more ambitious project on using the unsatisfiability
proofs produced by the SAT-solver in order to suggest proof steps, but making
special emphasis on proof steps that use quantifier-related proof rules. We plan
to continue working in this direction. The current DPS 2.0 interface is based on
EMACS. We are developing a new interface that shows closer resemblance to
the Alloy Analyzer’s interface (including exhibiting counterexamples using the
graphic capabilities provided by the Alloy Analyzer).
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