
Lessons Learned on the Verification of Models

Using Dynamite

Mariano M. Moscato1, Carlos G. Lopez Pombo1,2, and Marcelo F. Frias1,2

1 Department of Computer Science, School of Science, University of Buenos Aires
2 CONICET

Abstract. The Dynamite Proving System (DPS) provides an assisted
theorem prover for Alloy. In this paper we report our experiences on
using DPS in the verification of an industrial size model for compositional
bindings in network domains, developed by Pamela Zave at AT&T. We
also review the DPS foundations, architecture, and some of its main
features.

1 Introduction

Specification of software systems is considered a worthwhile activity in most
modern software development processes. The main objective of specifying (or
modeling) software systems is the possibility of describing software artifacts with
a certain degree of abstraction. In this way analysis tasks can be performed on
these formal descriptions. This analysis may allow one to discover properties of
the specified artifacts, and understand the implications of our design decisions.

Alloy [1] is a formal modeling language that supports notations ubiquitous
in object oriented programming, and whose semantics is based on relations. The
existence of the Alloy Analyzer allows one to analyze Alloy specifications in a
fully automatic way. To perform this analysis the Alloy Analyzer translates Al-
loy specifications (where domains are bounded to finite sizes) to a propositional
formula. Then, this formula is tested for satisfiability using o↵-the-shelf SAT-
solvers. Bounding the size of domains has a direct impact on the conclusions we
can draw from the analysis process. If a counterexample for a given assertion is
found, then the model is certainly flawed. On the other hand, if no counterexam-
ple is found, we can only conclude that no counterexamples exist within these
domain sizes. Thus choosing larger bounds may show the existence of previously
unforeseen errors. Notice that this limited analyzability o↵ers the possibility of
getting rid of most of the errors introduced in the modeling process. At the
same time, models for critical applications cannot entirely rely only on this kind
of analysis because these applications require a proof of the absence of certain
errors.

An alternative is the use of heavyweight formal methods, as for instance
semi-automatic theorem provers, and among these, PVS [2]. Theorem provers
have limitations too. First, they require an expertise from the user that many
times discourages their use. And second, they have their own languages which

are seldom close to lightweight modeling languages. This may be a source of
error introduction in case lightweight models have to be translated. In theorem
proving, minor errors in a model may require to redo proofs that were using
inappropriate hypotheses. Much the same as errors overlooked during software
requirement elicitation have a greater impact the more advanced the develop-
ment stage is, model errors have greater impact the more auxiliary lemmas have
been introduced. In this context, a marriage between simple automatically an-
alyzable formal modeling languages and semi-automatic theorem provers is in
fact necessary when analyzing critical models.

In [3] we presented Dynamite in order to bridge the gap existing between
these two techniques for the language Alloy. Dynamite is an extension of PVS
that incorporates features such as:

– sound automatic translation of Alloy models to PVS (thus preventing the
introduction of errors in the translation process),

– a complete proof calculus for Alloy (therefore, valid Alloy properties can be
proved),

– modified PVS pretty-printer that shows proof steps in Alloy language (thus
bridging the gap between Alloy and PVS), and

– fluid automatic interaction with the Alloy Analyzer in order to automatically
analyze hypotheses introduced during the theorem proving process.

The goal of this paper is to report lesson learnt on using the tool for the
verification of an model for compositional bindings in network domains developed
by Pamela Zave for AT&T [4] used to state and validate meaningful properties
of real life computer networks.

The paper is organized as follows, in Sec. 2 we describe DPS, in Sec. 3 we
introduce the case study. Section 4 reports our experiences on proving properties
of the case study explained in Sec. 3. In Sec. 5 we present empirical results, draw
some conclusions and discuss related work. Finally, in Sec. 6, we list some further
research directions.

2 The Dynamite Proving System

DPS is a tool that allows the user to write specifications (written in Alloy lan-
guage), to validate these specifications (by finding models or counterexamples of
user-defined assertions in bounded domains with the help of the Alloy Analyzer),
and to prove assertions (using the theorem proving facilities provided by PVS).

We will now describe how these three activities are carried out in order to
verify the model subject of this article . We will also include some notes on the
theoretical foundations of DPS.

Writing an Alloy Model – The Alloy Language. DPS’ frontend uses GNU Emacs
[5], a highly customizable text editor, as its user interface. When the tool starts,
a GNU Emacs window is opened and, within it, the user can write an Alloy
model. We will now review some of the Alloy features.

In [4], Zave presents a formal model of compositional binding in network
domains. In that context, agents (which might be hardware devices or other
software systems) communicate with each other over a network Domain. These
agents are called endpoints. Each domain has a set of addresses, called space,
that must be used by the agents in their communications.

Di↵erent sorts of objects can be distinguished in the previous description.
Sorts are declared in Alloy using signatures (akin to classes in object orientation).

sig Agent {}

sig Domain {

endpoints: set Agent,

space: set Address,

routing: space -> endpoints

}

Signature Agent denotes a unary relation (i.e., a set) of atomic objects. Signa-
ture Domain declares a set of objects Domain having three fields of di↵erent type.
The field endpoints denotes a binary relation endpoints ✓ Domain ⇥ Agent .
Notice that without the modifier set in the declaration of field endpoints,
relation endpoints would be a total function instead of a relation. The in-
frastructure of the connection domain is represented by the ternary relation
routing ✓ Domain ⇥ Address ⇥ Agent , in which for each tuple hd, i, gi the ad-
dress i is in the domain space of d and g is an endpoint of the domain d.

To send a message an endpoint must find the way to bind a known identifier
with the identifier used by the domain to locate the receiver. There are three
ways of making such a binding. The simplest scenario is in which the initiator
(of the communication) does its own search of the binding, and then sends a
message whose destination is the resulting identifier. The original identifier has
no restrictions on it. Unrestricted identifiers will be referred as names. Now,
names and addresses can be abstracted as subtypes of a single type identifier.

abstract sig Identifier { }

sig Name, Address extends Identifier { }

Signature extension allows us to model single inheritance between signatures.
The abstract modifier indicates that Identifier is just a way to denote the
union of the sets of atoms of sort Name and Address.

In another scenario the initiator sends the message with an address (as desti-
nation) which is mapped by routing to an agent that is not the intended receiver
of the message, but that will forward it on its way to its destination. Such an
agent is called a handler. The handler handles the message by looking up the
binding of the address with the destination, thus changing the destination of the
message, and forwarding it to its new destination.

In the third scenario, the original identifier has two parts: an address part
and a name part. The first part is routed to a handler, just as in the previous
scenario. The handler has access to the binding of the hole pair, and handles the

message by changing the destination to the resulting identifier and forwarding
it. These address/name pairs also can be abstracted as a kind of identifier.

sig AddressPair extends Identifier

{ addr: Address, name: Name }

In Alloy, terms are constructed in the same way that in first-order logic.
Constants such as iden (denoting the binary identity), univ (denoting the set
holding all the atomic elements) and none (the empty relation), are terms. Also
user defined constants are terms. Variables are terms, and applications of op-
erators such as + (denoting the union of relations), & (denoting intersection), -
(denoting the di↵erence of relations), ~ (denoting the transposition, which flips
pairs hx, yi of a binary relation to hy, xi), * (for reflexive-transitive closure), “^”
(for transitive closure) and “.” for composition of relations, called navigation in
Alloy, yield terms.

Then, formulas are built from a set of terms by applying predicates to them in
order to obtain atomic formulas. The available predicates can be divided in two
groups: the standard built in predicates (such as: no to indicate that a relation
is empty, equality of two terms, in to denote the inclusion of a term in another,
etc.) and the user defined specification specific predicates. Compound formulas
are built by using the standard propositional connectors (&& for conjunction, ||
for disjunction, => for implication, not for negation, etc.) and quantifications
over the atomic sorts defined by the signatures.

Axioms are included in a model under the keyword fact. An axiom saying
that “there are no distinct address pairs with the same name and address”, is
written as:

fact { all disj p1, p2: AddressPair |

p1.addr != p2.addr || p1.name != p2.name }

The disj modifier singles out that p1 and p2 are distinct AddressPair atoms.

Validating an Alloy model – The Alloy Analyzer. Once a model has been pro-
vided, it can be analyzed by looking for counterexamples of properties that are
expected to hold in the model. These properties are called assertions. For in-
stance, the (not necessarily valid) assertion stating then “no endpoint has more
than one address in a domain” can be written in Alloy as:

assert UniqueAddress { all d: Domain, a1, a2: d.space |

a1 = a2 || no(a1.(d.routing) & a2.(d.routing)) }

DPS allows the user to search for counterexamples in which domains are
bounded up-to a certain number of elements, using the Alloy Analyzer. The Alloy
Analyzer translates the model and the negation of the assertion to a propositional
formula. Of course, the translation heavily depends on the bounds declared by
the user. Once a propositional formula has been obtained, the Alloy Analyzer
employs o↵-the-shelf SAT-solvers to test the formula for satisfiability. If the

SAT-solver judges the formula as satisfiable, then it means that there exists a
valuation satisfying the axioms and the negation of the property thus providing
a counterexample serving as a witness of the existence of a flaw in the model.
This valuation is then mapped backwards to the first-order model to provide
some insight of where to find the error. The study of the counterexample allows
the user to correct the error and continue the search for errors in the model.
This process can be seen as the debugging of the specification.

Proving Assertions – PVS. As we already mentioned, even when the analysis
of the specification does not end up with a counterexample, it does not mean
that the assertions are valid. It could be the case that finding a counterexample
requires larger scopes. Critical applications require higher levels of confidence
about the absence of errors, thus theorem proving is an alternative to fulfill this
need. DPS allows the user to prove that an assertion follows from a specification.

DPS heavily relies on the “Prototype Verification System” (PVS)[2]. As it
is mentioned in [6], PVS is a prototype environment for specification and veri-
fication, and it provides e↵ective theorem proving support. PVS’ language and
Alloy’s language di↵er, so when the user decides to prove certain assertion, DPS
automatically writes PVS theories describing the fork algebraic translation of
the given Alloy specification (to be explained in subsection 2.1), and then starts
the PVS theorem prover on the theorem corresponding to that assertion.

PVS is based on a sequent calculus, thus proofs can be seen as a tree in which
every node expresses a proof goal (i.e. a sequent). Each proof goal is a sequent

consisting of a sequence of formulas called antecedents and a sequence of formulas
called consequents. Naturally, the intuitive interpretation of a sequent is that the
conjunction of the antecedents implies the disjunction of the consequents. When
a sequent is recognized as true, then that branch of the tree is closed, and when
all the branches are closed, the proof is considered complete.

Proof rules are implemented as proof commands that can be applied on any
open branch. The application results in one or more nodes that are direct de-
scendants of the one to which the proof command was applied. Some examples
of PVS proof commands are:

– case: given a formula, splits the current branch into two branches. In one of
the branches the formula is introduced as a new antecedent, and is placed
as a proof obligation in the other branch of the proof;

– lemma: given a lemma name, introduces an instance of that lemma as a new
antecedent in the sequent;

– inst: given a list of terms, reduces universally quantified formulas in the
antecedent or existentially quantified formulas in the consequent by instan-
tiating the quantified variables with those terms in the specified order.

DPS also extends the library of PVS proof commands by adding new features,
such as: allowing to find counterexamples of the formula introduced with a case

in order to get confidence on the validity of that formula; analyzing the actual
proof goal (by invoking the Alloy Analyzer); automatically selecting possible

superfluous sequents, that could be left behind in the proving process; etc. We
will return to these features in Section 3.

During all the proving process DPS shows the sequents and accepts the ar-
guments of the proof commands in Alloy language, and not in its fork algebraic
translation (see subsection 2.1), in order to make the proving process appealing
to an Alloy user. For example, if the pretty-printer were deactivated, the initial
proof goal for the assertion UniqueAddress, presented before, would look like
this:

fm06?UniqueAddress :

|-------

{1} (FORALL(fm06?Domain3?srcBinding: (fm06?Domain3?srcBinding),

fm06?Path?source: (fm06?Path?source),

fm06?Path?generator: (fm06?Path?generator),

fm06?Path3?finSrc: (fm06?Path3?finSrc),

fm06?Domain3?BdstBinding: (fm06?Domain3?BdstBinding),

fm06?Path2?origDst: (fm06?Path2?origDst),

fm06?Domain?space: (fm06?Domain?space),

fm06?AddressPair?addr: (fm06?AddressPair?addr),

fm06?AddressPair?name: (fm06?AddressPair?name),

fm06?Domain?routing: (fm06?Domain?routing),

fm06?Domain?endpoints: (fm06?Domain?endpoints),

fm06?Domain2?dstBinding: (fm06?Domain2?dstBinding),

fm06?Path?dest: (fm06?Path?dest),

fm06?Path?absorber: (fm06?Path?absorber),

fm06?Domain3?AdstBinding: (fm06?Domain3?AdstBinding)):

(FORALL (d: (fm06?Domain),

a1: Carrier |

(Leq(a1, Navigation(d, fm06?Domain?space)) AND Atom(a1)),

a2: Carrier |

(Leq(a2, Navigation(d, fm06?Domain?space)) AND Atom(a2))):

((a1 = a2) OR

None(product(

Navigation(a1, Navigation(d, fm06?Domain?routing)),

Navigation(a2, Navigation (d, fm06?Domain?routing)))))))

The pretty printer displays the same proof goal as follows:

fm06?UniqueAddress :

|-------

{1} (all d : Domain, a1 : (d . space), a2 : (d . space) |

(a1 = a2) || no ((a1 . (d . routing)) & (a2 . (d . routing))))

2.1 Dynamite Proving System foundations

Dynamite was presented in [3] and one of its most relevant attributes is the
extension of PVS with a complete calculus for Alloy. This calculus is obtained by

translating Alloy specifications (theories) to fork algebraic theories. A semantics
preserving translation ensures that an assertion ↵ (semantically) follows from
an Alloy specification ⌃ if (and only if) its translation T (↵) can be proved from
the translation of the theory using the complete calculus for fork algebras. In
symbols, ⌃ |= ↵ () { T (�) | � 2 ⌃ } ` T (↵).

Formal semantics of Alloy assigns semantics to expressions and formulas in a
given environment. An environment is a function that assigns sets to signatures,
adequate relations to relational constants (those arising from signature fields),
and values to variables over individuals. In this sense, given an Alloy specification
⌃, a model for ⌃ is an environment e such that e |= ⌃ (e satisfies all the formulas
in ⌃). In order to interpret Alloy models, we use the class point-dense proper

!-closure fork algebras. These algebras are structures whose domain is a set
of binary relations built on top of a base set B. If we call R the domain of
such an algebra (notice that R ✓ Pw (B ⇥B)), R has to be closed under the
following operations for sets: union ([), intersection (\), complement (denoted,
for a binary relation r, by r), the empty binary relation (;), and the universal

binary relation B ⇥B, (usually denoted by 1).
Besides the previous operations for sets, R has to be closed under the fol-

lowing operations for binary relations: transposition (̆), navigation (;), and
reflexive–transitive closure (⇤). The identity relation (on B), is denoted by Id.

A binary operation called fork (r) is included, which requires set B to be
closed under an injective function ?. This means that there are elements x in B

that are the result of applying the function ? to elements y and z (i.e., x = y?z).
Since ? is injective, x can be seen as an encoding of the pair hy, zi. Those elements
that do not encode pairs, are called urelements. Operation fork is defined by:

rrs = { ha, b ? ci | ha, bi 2 r and ha, ci 2 s } .

Finally, we require set R to be point-dense. A point is a relation of the
form { ha, ai }. Point-density requires set R to have plenty of these relations.
More formally speaking, for each nonempty relation I contained in the identity
relation there must be a point p 2 R satisfying p ✓ I.

We can characterize points as nonempty relations that satisfy the property
x;1;x ✓ Id. If we denote the inclusion relation by “in” (as in Alloy), the predicate
“Point” defined by “Point(p) () p 6= ; ^ p;1;p ✓ Id” determines those
relations that are points.

In [7] we presented the calculus !-CCFAU, which is an extension of the calcu-
lus for fork algebras [8] with axioms and an infinitary proof rule characterizing
the reflexive-transitive closure. Later, in [3] this calculus got its final shape get-
ting closer to Alloy’s language and was proved to be complete for the class of
algebras PDOCFA. Also in [3] we presented a semantic preserving translation
F of Alloy terms and formulas to first-order formulas over fork algebraic terms
and proved that !-CCFAU is complete for Alloy specifications. To do this we
provided a way to build point-dense !-closure fork algebras from Alloy models
and vice-versa. These translations were used to prove the following lemmata and
theorem

Lemma 1. [3, Lemma 1]

Given an Alloy environment e, there exists a PDOCFA Fe and a relational

environment e

0
such that for every Alloy formula ', |= '[e] () Fe |= F (')[e0].

Lemma 2. [3, Lemma 1]

Given a PDOCFA F and a relational environment e, there exists an Alloy envi-

ronment e

0
such that for every Alloy formula ', F |= F (')[e] () |= '[e0].

Theorem 1. [3, Thm. 2]

Let ⌃ [{' } be a set of Alloy formulas. Then,

⌃ |= ' () { F (�) | � 2 ⌃ } ` F (').

3 Compositional Binding in Network Domains

In [3], in order to support the need for a tool like DPS, we developed a case-study
based on the model presented by Zave in [9]. In this article we want to report
our experience using DPS on the industrial size model [4] but also some of the
lessons we learned during the process of verification.

We already started introducing the model in Section 2 when we presented
Alloy’s basic constructs. Now we will finish the presentation of the part of the
model we were working on, and show how we used DPS to verify its correctness.

The binding of any identifier results in another identifier that could require
further binding. In that sense, binding is an operation inherently compositional.
Then domains can be extended as shown below. The union of all bindings that
apply to message destinations is represented by the relation dstBinding.

sig Domain {

...

dstBinding: Identifier -> Identifier

}

Domain properties

An endpoint is reachable in a domain, from an identifier, if there is an address
in the closure of the binding relation (but not in its domain) that routes to that
agent. In this sense, two agents are linked by a chain of one-step connections
between handlers; these one-step connections are called hops. The chain ends
when the last connection reaches the absorbing endpoint.

pred ReachableInDomain

(d: Domain, i: Identifier, g: Agent) {

some a: Address |

a in i.(*(d.dstBinding)) &&

a !in (d.dstBinding).Identifier &&

g in a.(d.routing)}

A domain satisfies the non-looping property if all those chains of hops and
handlers have finite length. This can be written as a predicate in Alloy as follows:

pred NonloopingDomain (d: Domain)

{ no (^(d.dstBinding) & iden) }

If all the identifiers in a domain reach at most one endpoint, we say that
the domain is deterministic. Using the Alloy quantifier lone (meaning “at most
one”), we get

pred DeterministicDomain (d: Domain) {

all i: Identifier | lone g: Agent | ReachableInDomain(d,i,g) }

In [4], Zave stated that these domain properties are preserved under addition
of bindings, provided that some conditions on the arguments are added. This
operation is modelled by the predicate:

AddBinding(d, d’ : Domain, newBinding: Identifier -> Identifier),

which establishes that d’ is the result of adding the binding newBinding to d.
Ensuring the preservation of reachability only requires to state that all the

identifiers appearing in the domain of newBinding are neither in the domain
of routing, nor in the domain, nor in the range of the old dstBinding. These
conditions are formalized by the predicate IdentifiersUnused. The following
assertion states the preservation condition explained before.

assert BindingPreservesReachability {

all d, d’: Domain, newBinding: Identifier -> Identifier |

IdentifiersUnused(d,newBinding.Identifier) &&

AddBinding(d,d’,newBinding)

=> (all i: Identifier, g: Agent |

ReachableInDomain(d,i,g) => ReachableInDomain(d’,i,g)) }

To preserve determinism it is su�cient to have IdentifiersUnused(d, newBinding.Identifier)
and know that newBinding is deterministic. To preserve non-looping it is nec-
essary to have IdentifiersUnused(d, newBinding. Identifier) and know
that newBinding is non-looping.

In [4], Zave used the Alloy Analyzer to show that no counterexample for
these preservation assertions exists in models up to certain sizes. Using DPS we
proved that all of them hold for models of any size.

Returnability

Binding is essential to create persistent network connections between endpoints.
This is done by delivering messages between them. In this model, to send a
message destined to the generator of a previously received one is called to return

a message. A domain satisfies the returnability property if every return message
is delivered to the corresponding agent. This property is stated by the predicate
ReturnableDomain in the Alloy specification.

When a message travels across handlers to reach an endpoint, its source
identifier can be modified. This identifier is used by the receiver as the destination
of the return message. Then, when a binding is added to a domain it is necessary
to inform whether that binding will change those identifiers. In this model, this is
done by the specialization of the AddBinding operation into two new operations:
AddABinding (no source modification) and AddBBinding.

As mentioned in [4], it is possible to ensure returnability in domains, such
as those defined in this model, by imposing certain conditions on them. These
conditions are: bindings and routing operate on di↵erent identifiers; except for
A bindings, delivering a message is deterministic; B bindings are invertible; and
A bindings precede B bindings. A domain satisfying those conditions is called a
structured domain.

Using the Alloy Analyzer, Zave showed in [4] that structure guarantees re-
turnability within the bounds used for the analysis. Using DPS we proved that
the addition of any of the two kinds of bindings preserves the structure of a
domain (as determined by the predicate StructuredDomain).

4 Using DPS to prove properties in an Alloy model

Among the various proof commands provided by PVS, there are some that are
critical in the development of a proof because their application could determine
whether it is possible to close a proof. Those commands perform the following
actions: hiding of sequent formulas, introducing lemmas and introducing cases.

The DPS proof commands implementing these actions have shown to be very
useful in two ways. The first one was already mentioned and refers to the fact
that whenever one of these actions is taken the correctness of the formula being
introduced is analyzed in order to avoid the introduction of non-valid hypothesis.
The second one is that DPS helps in the construction of the proof by pruning of

goals.
To illustrate the impact of these proof commands we will use parts of the

proof of the assertion BindingPreservesReachability mentioned before.

4.1 Introduction of cases

As we already mentioned, introduction of cases splits a branch in two, or more,
sub-goals. When a branch is split, one must solve all of the newly produced
branches to close it. At that moment, one would like to have certain confidence
on the fact that all the new branches can be closed, otherwise it will not be
possible to complete the proof.

As an example. let us see the simplified proof tree shown in Fig. 1. This tree
schematically represents the original proof tree. The marked nodes are those in
which a case command was applied. Notice that those nodes are at almost every
level in the proof and are the main reason why a branch splitting may occur.
Notice that a mistake in the introduction of a case can invalidate a significant
part of the proof.

Fig. 1. Simplified proof tree of the assertion BindingPreservesReachability.

It was at that point where DPS became helpful by enabling the possibility of
using the Alloy Analyzer on the new subgoals, in order to search for counterex-
amples of the respective sequents. Many working hours were saved by avoiding
the introduction of errors by case splitting.

4.2 Hiding sequent formulas

A formula can become irrelevant at some point of a proof for many reasons. For
instance, if it has to be used in another sibling but not in the current branch.
Figure 2 shows how, after the application of some proof commands, the resulting
sequent gets very di�cult to be understood.

{-1} (a!1 in (i!1 . (*(d!1 . dstBinding!1))))

[-2] (IdentifiersUnused (d!1, (newBinding!1 . Identifier)))

[-3] (all i : Identifier| ((i in (newBinding!1 . Identifier)) =>

(((i in Address) => (i in (d!1 . space!1))) &&

((i in AddressPair) => ((i . addr!1) in (d!1 . space!1))))))

[-4] ((d’!1 . endpoints!1) = (d!1 . endpoints!1))

[-5] ((d’!1 . space!1) = (d!1 . space!1))

[-6] ((d’!1 . routing!1) = (d!1 . routing!1))

[-7] ((d’!1 . dstBinding!1) = ((d!1 . dstBinding!1) + newBinding!1))

[-8] (g!1 in (a!1 . (d!1 . routing!1)))

|-------

{1} (a!1 in (i!1 . (*((d!1 . dstBinding!1) + newBinding!1))))

[2] (a!1 in (i!1 . (*(d’!1 . dstBinding!1))))

[3] (a!1 in ((d!1 . dstBinding!1) . Identifier))

Fig. 2. Example of a sequent after the application of some proof commands.

Notice that only two formulas are relevant (1 and -1). This is not an unusual
situation, because predicates often are used to encapsulate related properties

that not always are used at the same time, and their expansion can easily fill
the screen.

As we showed before, irrelevant sequent formulas obfuscate the job of proving
a theorem. For that reason, hiding sequent formulas could be a handy feature of
any interactive theorem prover like DPS.

Obviously, some formulas are needed to close a branch. Then, if by mistake
one of these formulas is hidden, the possibility of completing the proof can be
compromised. The DPS prover command dps-validate-goal allows the user
to search for counterexamples of the logical implication induced by the current
proof goal. Internally this is implemented by a call to the Alloy Analyzer on the
assertion resulting from the reverse translation of the current sequent.

In this way, the user can (up to a certain bound) check the safety of executing
an error prone action like hiding formulas.

4.3 Introduction of validated lemmas

The use of lemmas in the construction of a complex proof is essential. It allows to
encapsulate parts of the problem being solved, and to reuse it across the proof.
The DPS counterpart of the lemma PVS command, allows the user to introduce
assertions and/or facts as new hypothesis in the sequent.

It is worth noting that introducing a lemma is a crucial point of the proof
because from that point on, the work heavily depends on the validity of that
lemma. Using the DPS capability of validating assertions gives the user the
chance to start the phase of proving a lemma once the usefulness of the lemma
was confirmed (by helping to close the branch in which is introduced).

4.4 Pruning of goals

As mentioned before, it usually happens that a proof goal contains irrelevant
formulas. It is very useful to have a mechanism to figure out which ones of the
sequent formulas are really useful, specially when the person who wrote the
assertion is not the one who has to prove it.

DPS provides such mechanism. When the user applies the proof command
prune-goal, the system builds the logical implication between the antecedents
and the consequents, but keeping one of the formulas apart. Once this is done
the resulting assertion is analyzed in order to search for a counterexample. This
is done for all of the formulas in the sequent. If one of these searches succeeds (a
counterexample is found), it means that the missing formula is relevant, and the
user should use it to close the branch. In the other case, the missing formula is
deemed to be irrelevant, and the fact that no counterexample was found (up to
the given bounds) should encourage the user to think of a proof that does not
make any use of that formula. This mechanism is based on the same idea that
uses the automatic theorem prover SRASS [11] to select relevant premises of a
theorem from a large set of axioms.

This capability has been one of the most useful DPS features in building
proofs for the case study. This is because di�cult assertions produce complicated

sequents that are hard to understand at first glance, and these checks provide
a good guidance in the development of the proof. The relevant formulas of the
sequent showed in Fig. 2 were discovered by using this command.

5 Discussion

The proof of the Alloy assertions took 21 days of work of a PhD student. A total
of 41 lemmas had to be proved. Statistics for each assertion are given in table 1.
Note that the sum of the number of lemmas used for each assertion is above 41
because of the reuse of some lemmas.

Table 1. Distribution of the workload

Assertion Lemmas
Time
(days)

BindingPreservesReturnability 17 4
BindingPreservesDeterminism 30 14
BindingPreservesNonLooping 13 1
ABindingPreservesStructure 12 1
BBindingPreservesStructure 12 1

All the introduced hypothesis were previously validated by the Alloy Ana-
lyzer. All the main branches of the proofs where pruned with the help of the
Alloy Analyzer. In our experience these were key features for the understanding
of the model and helped us save days of work. This can be seen reflected in the
following: proving the hardest assertion in this case study took 14 days, while
proving an assertion of comparable di�culty in the case study presented in [3]
took 23 days to the same person.

In the process of verifying the Alloy specification using Dynamite we realized
that the integration between model-checking and theorem proving is a lot more
than a position. We experienced a dramatic reduction of the time needed to
prove properties based on the fact that whenever we started to prove properties,
the comprehension we had about the specification was shallow and most of the
time lemmas and case splitting were based on (possibly) incorrect intuitions. The
use of the Allow analyzer in the validation of these lemmas and cases revealed
severe misunderstandings of the behavior of the model, exemplified by the coun-
terexamples produced after the analysis, thus contributing in getting a better
comprehension of the model. With the help of the analyzer, the learning process
su↵ered a dramatic improvement because counterexamples served as guides on
how to understand the model behavior, thus helping in future introduction of
lemmas and case splittings.

With complex specifications, sequents tend to grow a lot while the proofs are
being developed. This happens as a consequence of the appearance of new as-
sumptions introduced by case splitting or the application of certain proof rules.

In some cases these assumptions appear very close to the start of the proof
and are maintained throughout all the branches, even when some of these as-
sumptions are useless for many of the branches. The possibility of pruning the
sequents by hiding useless formulas provided good guidelines of how the proof
should be completed.

We believe that this integration of a model-checker with a theorem prover
changes the whole concept of machine-assisted theorem proving by reducing the
technical requirements needed in order to use it in industrial software develop-
ment.

Integration of SAT-solvers and interactive theorem provers has been proposed
in several works. In particular, the semi-automatic theorem prover Isabell/HOL
[12] allows the use of external tools (model checkers, for example) to demonstrate
proof subgoals. An even more cohesive interaction is proposed in [13], where
MiniSAT and zCha↵ SAT-solvers are used to construct proofs of propositional
tautologies for Isabell/HOL or to find a counter example in case the proposition is
not valid. But in Dynamite the model checker is used to help the user to construct
the proof of a property on possible infinite-sized models. The combination of
Alloy with a theorem prover was addressed in [14], where the Prioni theorem
prover allows to prove properties on Alloy specifications by translating them to
first order formulas that describes their semantic. Then, an interactive first-order
theorem prover can be used in order to prove the desired property. Nevertheless,
the switching between formalisms overloads the work of the user, that have to
master a di↵erent language, with complete di↵erent semantics, in order to be
able to prove the Alloy assertions.

6 Further Work

Many ideas emerged from the intrinsic complexity of proving properties. We be-
lieve a machine can do much more in assisting users in the verification process.
On the one hand there are many concepts applied in programming environments
like Eclipse SDK [10] that can be included as features available in the process
of proving properties. Some of these concepts are refactoring of proofs (the pos-
sibility of renaming resources, in this case predicates, functions and lemmas, or
modifying their arity), tracing dependencies of proofs to have a global view of
the verification process state, shared proof pieces detection and automatic fac-
torization as lemmas, suggestions of measures to be taken at a certain step of
a proof for a certain formula of the sequent, this includes no only proof rules
that could unify with that formula, but also the suggestion of lemmas stored in
a database.

On the other hand we will work on the possibility of using the model-checker
in an implicit way. This means that there is no need for the user to wait for the
model-checker as far as it can run in background and report any counterexample
it could find as a consequence of a lemma introduction or a case splitting. This
approach also enables the possibility of using the analyzer for automatic, and
continuous, sequent pruning while the computer is idle.

We believe this kind of features are the ones that will really make theorem
provers usable in realistic software development scenarios.

References

1. Jackson, D., Shlyakhter, I., Sridharan, M.: A micromodularity mechanism. In:
Proceedings of the 8th European software engineering conference held together
with the 9th ACM SIGSOFT international symposium on Foundations of software
engineering, Vienna, Austria, Association for the Computer Machinery, ACM Press
(2001) 62–73

2. Owre, S., Rushby, J.M., Shankar, N.: PVS: A prototype verification system. In Ka-
pur, D., ed.: Proceedings of the 11th. International Conference on Automated De-
duction (CADE). Volume 607 of Lecture Notes in Artificial Intelligence., Saratoga,
NY, Springer-Verlag (1992) 148–752

3. Frias, M.F., Lopez Pombo, C.G., Moscato, M.M.: Alloy Analyzer+PVS in the
analysis and verification of Alloy specifications. In Grumberg, O., Huth, M., eds.:
Proceedings of the 13th. International Conference on Tools and Algorithms for
the Construction and Analysis of Systems (TACAS 2007). Volume 4424 of Lecture
Notes in Computer Science., Braga, Portugal, Springer-Verlag (2007) 587–601

4. Zave, P.: Compositional binding in network domains. In Misra, J., Nipkow, T.,
Sekerinski, E., eds.: FM. Volume 4085 of Lecture Notes in Computer Science.,
Springer (2006) 332–347

5. Free software foundation: Gnu emacs. On-line (1998–2008) Available at http:

//www.gnu.org/software/emacs/.
6. Owre, S., Shankar, N., Rushby, J.M., Stringer-Calvert, D.: PVS prover guide.

Computer Science Laboratory, SRI International. Version 2.4 edn. (2001)
7. Frias, M.F., Lopez Pombo, C.G., Aguirre, N.M.: An equational calculus for Alloy.

In Davies, J., Schulte, W., Barnett, M., eds.: Proceedings of the 6th. International
conference on formal engineering methods (ICFEM). Volume 3308 of Lecture Notes
in Computer Science., Seattle, Washington, United States, Springer-Verlag (2004)
162–175

8. Frias, M.F.: Fork algebras in algebra, logic and computer science. Volume 2 of
Advances in logic. World Scientific Publishing Co., Singapore (2002)

9. Zave, P.: A formal model of addressing for interoperating networks. In Fitzgerald,
J., Hayes, I.J., Tarlecki, A., eds.: FM. Volume 3582 of Lecture Notes in Computer
Science., Springer (2005) 318–333

10. The Eclipse foundation: Eclipse sdk. On-line (2001–2008) Available at http:

//www.eclipse.org.
11. Sutcli↵e, G., Puzis, Y.: SRASS - A Semantic Relevance Axiom Selection System.

In Pfenning, F., ed.: FM. Volume 4603 of Lecture Notes In Artificial Intelligence.,
Springer-Verlag (2007) 295–310

12. Paulson, L.: Isabelle: A generic theorem prover. In volume 828 of Lecture Notes
in Computer Science, Springer (1994)

13. Weber, T.: E�ciently Checking Propositional Resolution Proofs in Isabelle/HOL.
In Benzmüller , C., Fischer, B., Sutcli↵e, G., ed.: Proceedings of The 6th Inter-
national Workshop on the Implementation of Logics. CEUR-WS.org/Vol-2 (2006)
44–62

14. Arkoudas K., Khurshid S., Marinov D. and Rinard M.: Integrating Model Checking
and Theorem Proving for Relational Reasoning, in Proceedings of RelMiCS 2003
(Relational Methods in Computer Science), LNCS, Springer, 2003.

